Home
Class 12
MATHS
If y=e^"tan"^((-1)"x"), prove that (1+x^...

If `y=e^"tan"^((-1)"x"),` prove that `(1+x^2)y_2+(2x-1)y_1=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^acos^((-1)x) , then prove that (1-x^2)y_2-x y_1-a^2y=0 .

If log y=tan^(-1)x, show that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=e^(m sin^(-1)x) then prove that (1-x^2) y_2 - xy_1 = m^2 y

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2 .

If quad y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=(tan^(-1)x)^(2), then prove that (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=e^(mtan^(-1)x) , prove that : (1+x^(2))(d^(2)y)/(dx^(2))+(2x-m)dy/dx=0 .

If y=sin(mtan^(-1)x) , prove that : (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)+m^(2)y=0 .