Home
Class 12
MATHS
For a complex number Z. If arg(Z) in (-p...

For a complex number Z. If `arg(Z) in (-pi, pi]`, then `arg{1+cos.(6pi)/(7)+isin.(6pi)/(7)}` is (here `i^(2)=-1`)

Promotional Banner

Similar Questions

Explore conceptually related problems

For a complex number z, if arg(z) in (-pi, pi], then arg(1+cos.(6pi)/(5)+I sin.(6pi)/(5)) is (here i^(2)-1 )

z=cos(pi/6)+isin(pi/6)=?

(cos(pi/6)+isin(pi/6))^7=?

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

z=5(cos((7pi)/6)+isin((7pi)/6))=?

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

The complex number z satisfying the condition arg{(z-1)/(z+1)}=(pi)/(4) lies on