Home
Class 11
MATHS
Prove that: sin18^0=(sqrt(5)-1)/4 ....

Prove that: `sin18^0=(sqrt(5)-1)/4` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos36^(@)=(sqrt(5)+1)/(4)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(0)=(sqrt(10+2sqrt(5)))/(4)

Prove that: sin36^(0)=(sqrt(10-2sqrt(5)))/(4)

Prove that: i) sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2

Prove that : sin 75^0 = (sqrt(6) + sqrt(2))/4

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)}=(pi)/(4)+(sin^(-1)x)/(2),0

Show that 4sin27^(0)=(5+sqrt(5))^((1)/(2))-(3-sqrt(5))^((1)/(2))