Home
Class 13
MATHS
The number of x in [0, 2pi] for which |s...

The number of `x in [0, 2pi]` for which `|sqrt(2"sin"^(4)x + 18"cos"^(2) x) -sqrt(2"cos"^(4)x + 18"sin"^(2)x)|`= 1, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

int(sqrt(sin^(4)x+cos^(4)x))/(sin^(3)x cos x)dx,x in(0,(pi)/(2))

int(sqrt(sin^(4)x+cos^(4)x))/(sin^(3)x cos x)dx,x in(0,(pi)/(2))

Find the value of x in [-pi,pi] for which f(x)=sqrt(log_(2)(4sin^(2)x-2sqrt(3)sin x-2sin x+sqrt(3)+1)) is defined.

The value of x in (0,(pi)/(2)) satisfying (sqrt(3)-1)/(sin x)+(sqrt(3)+1)/(cos x)=4sqrt(2) is / are

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is