Home
Class 12
MATHS
" (a) "tan^(-1)x+tan^(-1)y+tan^(-1)z=tan...

" (a) "tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)(x+y+z-xyz)/(1-xy-yz-zx)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If x,y are real numbers such that xy<1 then tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), then x+y+z-xyz=0x+y+z+xyz=0xy+yz+zx+1=0xy+yz+zx-1=0

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1) x + tan^(-1)y + tan^(-1)z = pi show that : 1/(xy) + 1/(yz) + 1/(zx) = 1

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P the (2y)/(1-y^(2))=