Home
Class 12
MATHS
int0^(pi/2)log(tanx). dx...

`int_0^(pi/2)log(tanx). dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is int_(0)^(pi/2) ln(tanx) dx equal to ?

The value of the integral int_(0)^(pi//2)log |tanx| dx is

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove: int_(0)^( pi/2)log|tan x|dx=0

int_(0)^((pi)/(2))log(tan x)*dx

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=