Home
Class 11
MATHS
lim[x->1] ([sum[k=1]^100x^k]-100])/(...

`lim_[x->1] ([sum_[k=1]^100x^k]-100])/(x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 1) sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate the limit: lim_(x rarr1)(sum_(k=1)^(oo0)x^(k)-100)/(x-1)

lim_ (x rarr1) ([sum_ (k = 1) ^ (100) x ^ (k)] - 100] ()) / (x-1)

lim_ (x rarr1) ((sum_ (k = 1) ^ (200) x ^ (K)) - 200) / (x-1)

k=lim_(xtooo)[(sum_(k=1)^(1000)(x+k)^(m))/(x^(m)+10^(1000))] (mgt101) is -

The coefficient of x^(50) in the expansion sum_(k=0)^(100)""^(100)C_(k)( x-2)^(100-k)3^(k) is also equal to :

(lim)_(x->0)([100 x/(sin^(-1)x)]+[100(tan^(-1)x)/x])=