Home
Class 11
MATHS
Find lim {x->pi/4} (1-tanx)/(1-sqrt(2)si...

Find `lim {x->pi/4} (1-tanx)/(1-sqrt(2)sinx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Putting z=x-(pi)/(4), show that lim_(x rarr(pi)/(4))(1-tan x)/(1-sqrt(2)sin x)=2

Evaluate the following limits: lim_(xrarr(pi)/(4))(1-tanx)/(1-sqrt2sinx)

Find lim {x rarr (pi) / (4)} (1-tan x) / (1-sqrt (2) sin x)

Evaluate the following limit: (lim)_(x rarr(pi)/(4))(1-tan x)/(1-sqrt(2)s in x)

Find the value of k, if the function f given by : {:(f(x)=(1-tanx)/(1-sqrt2sinx)",", "for" x nepi/4),(=k/2",","for"x=pi/4):} is continous at x =pi/4*

underset( x rarr (pi)/(4))("Lim")(1-tanx)/( 1- sqrt(2) sin x)

Evaluate the following limit: (lim)_(x->pi/4)(sqrt(2)cosx-1)/(cotx-1)

The value of lim_(xto(pi)/4)(4sqrt(2)-(cosx+sinx)^(5))/(1-sin2x) is

The value of lim_(x rarr(pi)/(4))(sqrt(1-sqrt(sin2x)))/(pi-4x)is