Home
Class 12
MATHS
|[2ab,a^2,b^2] , [a^2,b^2,2ab] , [b^2,2a...

`|[2ab,a^2,b^2] , [a^2,b^2,2ab] , [b^2,2ab,a^2]|=-(a^3+b^3)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that |[a,b,0],[0,a,b],[b,0,a]|=a^3+b^3,hence find the value of |[2ab,a^2,b^2],[a^2,b^2,2ab],[b^2,2ab,a^2]|

Prove that det[[a^(2),2ab,b^(2)b^(2),a^(2),2ab2ab,b^(2),a^(2)]]=(a^(3)+b^(3))^(2)

(a^2+b^2+2ab)-(a^2+b^2-2ab)

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

a^3 - b^3 - 3a^2b+ 3ab^2, by, a^2 + b^2 - 2ab

(a^3-b^3)/(a^2+b^2+ab)=

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

(a^(2)+2ab+b^(2))/(a+b)