Home
Class 12
MATHS
Prove that |[1,1,1] , [a,b,c] ,[a^2-bc, ...

Prove that `|[1,1,1] , [a,b,c] ,[a^2-bc, b^2-ca, c^2-ab]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding prove that: |[1,a,a^(2)-bc],[1,b,b^(2)-ca],[1,c,c^(2)-ab]|=0

Prove that det[[1,a,a^(2)-bc1,b,b^(2)-ca1,c,c^(2)-ab]]=0

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

Show without expanding at any stage that: [1/a, a^2, bc],[1/b, b^2, ca],[1/c, c^2, ab]|=0

Prove that |[1,a,bc] , [1,b,ca], [1,c,ab]|=|[1,a,a^2] , [1,b,b^2] , [1,c,c^2]|

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

Without expanding the determinant prove that abs([a,a^2,bc],[b,b^2,ca],[c,c^2,ab])=abs([1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3])

|[1,a^(2),bc],[1,b^(2),ca],[1,c^(2),ab]|

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|