Home
Class 11
CHEMISTRY
Calculate the simultaneous solubility o...

Calculate the simultaneous solubility of AgSCN and AgBr. ` K_(sp) ` for AgSCN and AgBr are` 1 xx 10 ^(-12) and 5 xx 10 ^(-13)` respectively.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the simultaneous solubility of AgSCN and AgBr, we will follow these steps: ### Step 1: Write the dissociation equations For AgSCN: \[ \text{AgSCN (s)} \rightleftharpoons \text{Ag}^+ (aq) + \text{SCN}^- (aq) \] For AgBr: \[ \text{AgBr (s)} \rightleftharpoons \text{Ag}^+ (aq) + \text{Br}^- (aq) \] ### Step 2: Define the solubility variables Let: - \( A \) = solubility of AgSCN in moles per liter - \( B \) = solubility of AgBr in moles per liter From the dissociation equations, we can express the concentrations of the ions: - For AgSCN: - \([ \text{Ag}^+ ] = A\) - \([ \text{SCN}^- ] = A\) - For AgBr: - \([ \text{Ag}^+ ] = B\) - \([ \text{Br}^- ] = B\) ### Step 3: Write the expressions for \( K_{sp} \) The solubility product \( K_{sp} \) expressions for both salts are: 1. For AgSCN: \[ K_{sp} = [ \text{Ag}^+ ][ \text{SCN}^- ] = A(A) = A^2 \] Given \( K_{sp} = 1 \times 10^{-12} \): \[ A^2 = 1 \times 10^{-12} \] (Equation 1) 2. For AgBr: \[ K_{sp} = [ \text{Ag}^+ ][ \text{Br}^- ] = B(A + B) \] Given \( K_{sp} = 5 \times 10^{-13} \): \[ 5 \times 10^{-13} = B(A + B) \] (Equation 2) ### Step 4: Substitute and simplify From Equation 1, we have: \[ A = \sqrt{1 \times 10^{-12}} = 1 \times 10^{-6} \text{ moles per liter} \] Now substitute \( A \) into Equation 2: \[ 5 \times 10^{-13} = B(1 \times 10^{-6} + B) \] ### Step 5: Solve for \( B \) Rearranging gives: \[ 5 \times 10^{-13} = B \times 1 \times 10^{-6} + B^2 \] This can be rearranged to: \[ B^2 + 1 \times 10^{-6}B - 5 \times 10^{-13} = 0 \] ### Step 6: Use the quadratic formula Using the quadratic formula \( B = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Where \( a = 1, b = 1 \times 10^{-6}, c = -5 \times 10^{-13} \): \[ B = \frac{-1 \times 10^{-6} \pm \sqrt{(1 \times 10^{-6})^2 - 4 \times 1 \times -5 \times 10^{-13}}}{2 \times 1} \] Calculating the discriminant: \[ (1 \times 10^{-6})^2 + 20 \times 10^{-13} = 1 \times 10^{-12} + 20 \times 10^{-13} = 21 \times 10^{-13} = 2.1 \times 10^{-12} \] Now substituting back: \[ B = \frac{-1 \times 10^{-6} \pm \sqrt{2.1 \times 10^{-12}}}{2} \] Calculating \( \sqrt{2.1 \times 10^{-12}} \): \[ \sqrt{2.1} \approx 1.45 \] Thus: \[ B = \frac{-1 \times 10^{-6} \pm 1.45 \times 10^{-6}}{2} \] Taking the positive root: \[ B = \frac{0.45 \times 10^{-6}}{2} = 0.225 \times 10^{-6} = 2.25 \times 10^{-7} \text{ moles per liter} \] ### Step 7: Calculate \( A \) Now, substitute \( B \) back into the equation for \( A \): \[ A = 1 \times 10^{-6} \text{ moles per liter} \] ### Final Answer The simultaneous solubility of AgSCN and AgBr is: - \( A = 1 \times 10^{-6} \) moles per liter for AgSCN - \( B = 2.25 \times 10^{-7} \) moles per liter for AgBr

To calculate the simultaneous solubility of AgSCN and AgBr, we will follow these steps: ### Step 1: Write the dissociation equations For AgSCN: \[ \text{AgSCN (s)} \rightleftharpoons \text{Ag}^+ (aq) + \text{SCN}^- (aq) \] For AgBr: \[ \text{AgBr (s)} \rightleftharpoons \text{Ag}^+ (aq) + \text{Br}^- (aq) \] ...
Promotional Banner

Topper's Solved these Questions

  • EQUILIBRIUM

    ICSE|Exercise NCERT TEXT-BOOK EXERCISE |109 Videos
  • EQUILIBRIUM

    ICSE|Exercise FILL IN THE BLANKS TYPE QUESTIONS |34 Videos
  • ENVIRONMENTAL CHEMISTRY

    ICSE|Exercise NCERT TEXT-BOOK EXERCISE|20 Videos
  • HYDROCARBONS

    ICSE|Exercise NCERT TEXT-BOOK EXERCISES |46 Videos

Similar Questions

Explore conceptually related problems

Calculate simultaneous solubility of AgCNS and AgBr in a solution of water. (K_(SP)of AgBr = 5xx10^(-13) and K_(SP)of AgCNS = 1xx10^(-12))

The solubility of AgCl in 0.1M NaCI is (K_(sp) " of AgCl" = 1.2 xx 10^(-10))

Calculate the solubility og AgCN in a buffer solution of pH 3.00 K_(sp(AgCN)) = 1.2 xx10^(-18) and K_(a(HCN)) = 4.8 xx 10^(10) M^(2) .

The solubility product constant of Ag_(2)CrO_(4) and AgBr are 1.1xx10^(-12) and 5.0xx10^(-13) respectively. Calculate the ratio of the molarities of their saturated solutions.

The simultaneous solubility of AgCN(K_(sp)=2.5xx10^(-16)) and AgCl(K_(sp)=1.6xx10^(-10)) in 1.0 M NH_(3)(aq.) are respectively: [Given: K_(f1)[Ag(NH_(3))_(2)^(+)=10^(7)

What would be the solubility of silver chloride in 0.10M NaCI solution? K_(sp) for AgCI = 1.20 xx 10^(-10)

Calculate the solubility of CaF_(2) in a solution buffered at pH = 3.0. K_(a) for HF = 6.3 xx 10^(-4) and K_(sp) of CaF_(2) = 3.45 xx 10^(-11) .

The solubility product constant (K_(sp)) of salts of types MX, MX_(2) , and M_(3)X at temperature T are 4.0 xx 10^(-8), 3.2 xx 10^(-14) , and 2.7 xx 10^(-15) , respectively. The solubilities of the salts at temperature T are in the order

Calculate the solubility of CaF_(2) in water at 298 K which is 70% dissociated. K_(sp) of CaF_(2) is 1.7 xx 10^(-10) . If answer is x xx 10^(-4) mol/ltr then x = ____?

Calculate the solubility of CoS in 0.1M H_(2)S and 0.15M H_(3)O^(oplus) (K_(sp) of CoS = 3 xx 10^(-26)) . (K_(1) xx K_(2) (H_(2)S) = 10^(-21))