Home
Class 12
MATHS
The value of 'a' so that the vectors 2 h...

The value of 'a' so that the vectors `2 hat(i) - 3hat(j) + 4hat(k) and a hat(i) + 6hat(j) - 8hat(k)` are collinear

A

4

B

`-4`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of 'a' such that the vectors \( \mathbf{p} = 2\hat{i} - 3\hat{j} + 4\hat{k} \) and \( \mathbf{q} = a\hat{i} + 6\hat{j} - 8\hat{k} \) are collinear, we can follow these steps: ### Step 1: Understand the condition for collinearity Two vectors \( \mathbf{p} \) and \( \mathbf{q} \) are collinear if there exists a scalar \( \lambda \) such that: \[ \mathbf{p} = \lambda \mathbf{q} \] ### Step 2: Set up the equation Using the vectors given: \[ 2\hat{i} - 3\hat{j} + 4\hat{k} = \lambda (a\hat{i} + 6\hat{j} - 8\hat{k}) \] ### Step 3: Expand the right side Expanding the right-hand side gives: \[ 2\hat{i} - 3\hat{j} + 4\hat{k} = \lambda a \hat{i} + 6\lambda \hat{j} - 8\lambda \hat{k} \] ### Step 4: Equate components Now we can equate the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) from both sides: 1. For \( \hat{i} \): \[ 2 = \lambda a \quad \text{(1)} \] 2. For \( \hat{j} \): \[ -3 = 6\lambda \quad \text{(2)} \] 3. For \( \hat{k} \): \[ 4 = -8\lambda \quad \text{(3)} \] ### Step 5: Solve for \( \lambda \) From equation (2): \[ \lambda = \frac{-3}{6} = -\frac{1}{2} \] ### Step 6: Verify \( \lambda \) with equation (3) Substituting \( \lambda = -\frac{1}{2} \) into equation (3): \[ 4 = -8\left(-\frac{1}{2}\right) \implies 4 = 4 \quad \text{(True)} \] ### Step 7: Substitute \( \lambda \) back into equation (1) Now substitute \( \lambda = -\frac{1}{2} \) into equation (1): \[ 2 = -\frac{1}{2} a \] Multiplying both sides by -2: \[ -4 = a \] ### Conclusion Thus, the value of \( a \) such that the vectors are collinear is: \[ \boxed{-4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Knowledge Check

  • The angle between the vectors 4hat(i)+3hat(j)-4hat(k) and 3hat(i)+4hat(j)+6hat(k) is :

    A
    `0^(@)`
    B
    `45^(@)`
    C
    `60^(@)`
    D
    `90^(@)`
  • Similar Questions

    Explore conceptually related problems

    Write the value of lamda so that the vectors vec(a)= 2hat(i) + lamda hat(j) + hat(k) and vec(b)= hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other?

    For what value of a the vectors 2 hat i-\ 3 hat j+4 hat k and a hat i+6 hat j-8 hat k are collinear?

    Show that the vectors 2 hat i-3 hat j+4 hat k and -4 hat i+6 hat j-8 hat k are collinear.

    Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

    Show that the vectors 2 hat i-3 hat j+4 hat k\ a n d-4 hat i+6 hat j-8 hat k are collinear.

    For what value of a the vectors 2 hat i-3 hat j+4 hat k\ a n d\ a hat i+6 hat j-8 hat k are collinear?

    Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :