Home
Class 12
MATHS
|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)...

`|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8`, then the value of `|vec(a) + 3vec(b)|` is

A

37

B

`sqrt37`

C

6

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector expression \(|\vec{a} + 3\vec{b}|\). We are given the following information: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 3\) - \(\vec{a} \cdot \vec{b} = -8\) ### Step-by-Step Solution: 1. **Use the formula for the magnitude of the sum of vectors:** \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) \] In our case, we need to find \(|\vec{a} + 3\vec{b}|\), so we modify the formula: \[ |\vec{a} + 3\vec{b}|^2 = |\vec{a}|^2 + |3\vec{b}|^2 + 2(\vec{a} \cdot 3\vec{b}) \] 2. **Calculate \(|3\vec{b}|\):** \[ |3\vec{b}| = 3|\vec{b}| = 3 \times 3 = 9 \] Therefore, \(|3\vec{b}|^2 = 9^2 = 81\). 3. **Substitute the values into the formula:** \[ |\vec{a} + 3\vec{b}|^2 = |\vec{a}|^2 + |3\vec{b}|^2 + 2(\vec{a} \cdot 3\vec{b}) \] \[ = 2^2 + 9^2 + 2 \cdot 3 \cdot (\vec{a} \cdot \vec{b}) \] \[ = 4 + 81 + 6(\vec{a} \cdot \vec{b}) \] 4. **Substitute \(\vec{a} \cdot \vec{b} = -8\):** \[ = 4 + 81 + 6(-8) \] \[ = 4 + 81 - 48 \] \[ = 85 - 48 = 37 \] 5. **Take the square root to find the magnitude:** \[ |\vec{a} + 3\vec{b}| = \sqrt{37} \] ### Final Answer: \[ |\vec{a} + 3\vec{b}| = \sqrt{37} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then the value of vec( a). vec(b) is a) 12√3 only b) -12√3 only c) 12√3 or -12√3 d) none of these

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

If | vec a|=2| vec b|=5 and | vec axx vec b|=8, then find the value of vec a . vec bdot

a, b are the magnitudes of vectors vec(a) & vec(b) . If vec(a)xx vec(b)=0 the value of vec(a).vec(b) is

If vec a and vec b are two vectors such that | vec a|=2, |vecb|=3 and ( vec a . vec b )=4 then \ f i n d |( vec a - vec b )|