Home
Class 12
MATHS
Find the projection of vec(b)+ vec(c ) o...

Find the projection of `vec(b)+ vec(c )` on `vec(a)` where `vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(\vec{b} + \vec{c}\) on the vector \(\vec{a}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k} \] \[ \vec{c} = 2\hat{i} - \hat{j} + 4\hat{k} \] ### Step 2: Calculate \(\vec{b} + \vec{c}\) We add the vectors \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} + \vec{c} = (\hat{i} + 2\hat{j} - 2\hat{k}) + (2\hat{i} - \hat{j} + 4\hat{k}) \] Combine like terms: \[ = (1 + 2)\hat{i} + (2 - 1)\hat{j} + (-2 + 4)\hat{k} \] \[ = 3\hat{i} + 1\hat{j} + 2\hat{k} \] ### Step 3: Find the projection of \(\vec{b} + \vec{c}\) on \(\vec{a}\) The formula for the projection of vector \(\vec{x}\) on vector \(\vec{y}\) is given by: \[ \text{Projection of } \vec{x} \text{ on } \vec{y} = \frac{\vec{x} \cdot \vec{y}}{|\vec{y}|} \] Here, \(\vec{x} = \vec{b} + \vec{c} = 3\hat{i} + 1\hat{j} + 2\hat{k}\) and \(\vec{y} = \vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}\). ### Step 4: Calculate the dot product \((\vec{b} + \vec{c}) \cdot \vec{a}\) \[ \vec{b} + \vec{c} \cdot \vec{a} = (3\hat{i} + 1\hat{j} + 2\hat{k}) \cdot (2\hat{i} - 2\hat{j} + \hat{k}) \] Calculating the dot product: \[ = 3 \cdot 2 + 1 \cdot (-2) + 2 \cdot 1 \] \[ = 6 - 2 + 2 = 6 \] ### Step 5: Calculate the magnitude of \(\vec{a}\) \[ |\vec{a}| = \sqrt{(2)^2 + (-2)^2 + (1)^2} \] \[ = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 6: Find the projection Now we can find the projection: \[ \text{Projection of } (\vec{b} + \vec{c}) \text{ on } \vec{a} = \frac{6}{3} = 2 \] ### Final Answer The projection of \(\vec{b} + \vec{c}\) on \(\vec{a}\) is \(2\). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the projection of vec b+ vec c on vec a where vec a=2 hat i-\ 2 hat j+\ hat k ,\ vec b=\ hat i+\ 2 hat j-\ 2 hat k and vec c=2 hat i-\ hat j+\ 4 hat k

Find the projection of vec b+ vec c on vec a , where vec a = 2 hat i-2 hat j+ hat k , vec b = hat i+2 hat j-2 hat k and vec c=2 hat i- hat j+4 hat k .

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Write the projection of vec b+ vec c\ on\ vec a , when vec a=2 hat i-2 hat j+ hat k ,\ vec b= hat i+2 hat j-2 hat k\ a n d\ vec c=2 hat i- hat j+4 hat kdot

Find the projection of vec b+ vec c on vec a where vec a=7 hat i- vec j+8 hat k ,\ \ vec b=\ hat i+2 hat j+3 hat k and vec c= hat j+4 hat k

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is