Home
Class 12
MATHS
Find the area of the parallelogram whose...

Find the area of the parallelogram whose diagonals are determined by vectors `vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the parallelogram whose diagonals are determined by the vectors \(\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}\) and \(\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}\), we can use the formula for the area of a parallelogram given its diagonals: \[ \text{Area} = \frac{1}{2} \|\vec{a} \times \vec{b}\| \] where \(\vec{a} \times \vec{b}\) is the cross product of the vectors \(\vec{a}\) and \(\vec{b}\). ### Step 1: Set up the determinant for the cross product The cross product \(\vec{a} \times \vec{b}\) can be calculated using the determinant of a matrix formed by the unit vectors \(\hat{i}, \hat{j}, \hat{k}\) and the components of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix} \] ### Step 2: Calculate the determinant To calculate the determinant, we expand it as follows: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & -2 \\ -3 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 1 & -3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 1 & -2 \\ -3 & 4 \end{vmatrix} = (1)(4) - (-2)(-3) = 4 - 6 = -2 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} = (3)(4) - (-2)(1) = 12 + 2 = 14 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 3 & 1 \\ 1 & -3 \end{vmatrix} = (3)(-3) - (1)(1) = -9 - 1 = -10 \] Putting it all together: \[ \vec{a} \times \vec{b} = -2\hat{i} - 14\hat{j} - 10\hat{k} \] ### Step 3: Find the magnitude of the cross product Now, we calculate the magnitude of \(\vec{a} \times \vec{b}\): \[ \|\vec{a} \times \vec{b}\| = \sqrt{(-2)^2 + (-14)^2 + (-10)^2} \] Calculating each term: \[ = \sqrt{4 + 196 + 100} = \sqrt{300} \] ### Step 4: Calculate the area of the parallelogram Now we can find the area: \[ \text{Area} = \frac{1}{2} \|\vec{a} \times \vec{b}\| = \frac{1}{2} \sqrt{300} = \frac{1}{2} \times 10\sqrt{3} = 5\sqrt{3} \] Thus, the area of the parallelogram is: \[ \boxed{5\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a= hat i- hat j+3 hat k and vec b=2 hat i-7 hat j+ hat k .

Find the area of the triangle whose adjacent sides are determined by the vectors vec(a)=(-2 hat(i)-5 hat(k)) and vec(b)= ( hat(i)- 2 hat(j) - hat(k)) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Calculate the area of the parallelogram when adjacent sides are given by the vectors vec(A)=hat(i)+2hat(j)+3hat(k) and vec(B)=2hat(i)-3hat(j)+hat(k) .

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a= hat i- hat j+3 hat ka n d vec b=2 hat i-7 hat j+ hat kdot

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Find the area of a parallelogram whose adjacent sides are given by the vectors vec a=3 hat i+ hat j+4 hat k and vec b= hat i- hat j+ hat k .

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .