Home
Class 12
MATHS
If vec(a)= hat(i) + hat(j) + hat(k) and ...

If `vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k)`, then find `vec(c )` such that `vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{c}\) such that: 1. \(\vec{a} \times \vec{c} = \vec{b}\) 2. \(\vec{a} \cdot \vec{c} = 3\) Given: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{j} - \hat{k} \] ### Step 1: Calculate \(\vec{a} \times \vec{b}\) We will use the vector triple product identity: \[ \vec{a} \times \vec{c} = \vec{b} \implies \vec{a} \times \vec{c} = \vec{b} \] First, we need to compute \(\vec{a} \times \vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 0 & 1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \] Calculating the minors: \[ = \hat{i} (1 \cdot (-1) - 1 \cdot 1) - \hat{j} (1 \cdot (-1) - 0 \cdot 1) + \hat{k} (1 \cdot 1 - 0 \cdot 1) \] \[ = \hat{i} (-1 - 1) - \hat{j} (-1) + \hat{k} (1) \] \[ = -2\hat{i} + \hat{j} + \hat{k} \] ### Step 2: Set up the equation using the vector triple product identity Using the identity: \[ \vec{a} \times \vec{c} = \vec{b} \implies \vec{a} \times \vec{c} = \hat{j} - \hat{k} \] ### Step 3: Use the dot product condition Now, we also have: \[ \vec{a} \cdot \vec{c} = 3 \] Substituting \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\): \[ (\hat{i} + \hat{j} + \hat{k}) \cdot \vec{c} = 3 \] Let \(\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}\): \[ 1 \cdot x + 1 \cdot y + 1 \cdot z = 3 \implies x + y + z = 3 \] ### Step 4: Solve the equations From the cross product, we have: \[ \vec{a} \times \vec{c} = -2\hat{i} + \hat{j} + \hat{k} \] This gives us a system of equations. We can express \(\vec{c}\) in terms of \(x\), \(y\), and \(z\). Using the identity: \[ \vec{a} \cdot \vec{c} = 3 \implies x + y + z = 3 \] From the cross product, we can also derive: \[ \vec{a} \cdot \vec{c} = 3 \implies 3 = 3x + 3y + 3z \] Now, substituting \(x + y + z = 3\) into the equation we derived from the cross product gives us: \[ -3\vec{c} = -2\hat{i} + \hat{j} + \hat{k} \implies \vec{c} = \frac{-2\hat{i} + \hat{j} + \hat{k}}{-3} \] \[ = \frac{2}{3}\hat{i} - \frac{1}{3}\hat{j} - \frac{1}{3}\hat{k} \] ### Final Result Thus, the vector \(\vec{c}\) is: \[ \vec{c} = \frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

If vec a= hat i+ hat j+ hat k\ a n d vec b= hat j- hat k , find a vector vec c such that vec a\ "x"\ vec c= vec b and vec adot\ vec c=3

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec a= hat i+ hat j+ hat k and vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec a . vec c=2 and vec axx vec c= vec bdot

Let vec(a) = hat(i) - 2hat(j) + 2hat(k) and vec(b) = 2hat(i) - hat(j) + hat(k) be two vectors. If vec(c) is a vector such that vec(b) xx vec(c) = vec(b) xx vec(a) and vec(c).vec(a) = 1 , then vec(c).vec(b) is equal to :