Home
Class 12
MATHS
value of |(2,3,4),(5,6,8),(6x,9x,12x)|...

value of `|(2,3,4),(5,6,8),(6x,9x,12x)|`

A

`9x^(2)`

B

x

C

2x

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( |(2,3,4),(5,6,8),(6x,9x,12x)| \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} 2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x \end{vmatrix} \] ### Step 2: Factor Out Common Terms We notice that in the second column, the number 3 is common, and in the third column, the number 4 is common. We can factor these out: \[ D = 3 \cdot 4 \cdot \begin{vmatrix} 2 & 1 & 1 \\ 5 & 2 & 2 \\ 6x & 2 & 3x \end{vmatrix} \] ### Step 3: Factor Out from the Third Row Next, we can factor out \( 3x \) from the third row: \[ D = 12x \cdot \begin{vmatrix} 2 & 1 & 1 \\ 5 & 2 & 2 \\ 6 & 2 & 1 \end{vmatrix} \] ### Step 4: Simplify the Determinant Now we can calculate the determinant: \[ D = 12x \cdot \begin{vmatrix} 2 & 1 & 1 \\ 5 & 2 & 2 \\ 6 & 2 & 1 \end{vmatrix} \] ### Step 5: Calculate the Determinant We can calculate the determinant using the formula for 3x3 matrices: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Applying this to our determinant: \[ = 2 \cdot (2 \cdot 1 - 2 \cdot 2) - 1 \cdot (5 \cdot 1 - 2 \cdot 6) + 1 \cdot (5 \cdot 2 - 2 \cdot 6) \] \[ = 2 \cdot (2 - 4) - 1 \cdot (5 - 12) + 1 \cdot (10 - 12) \] \[ = 2 \cdot (-2) - 1 \cdot (-7) + 1 \cdot (-2) \] \[ = -4 + 7 - 2 = 1 \] ### Step 6: Final Value of the Determinant Now substituting back, we have: \[ D = 12x \cdot 1 = 12x \] ### Step 7: Check for Identical Columns We notice that the second and third columns are not identical. However, we can see that the third column is a multiple of the second column, which means the determinant will still be zero. Thus, the final value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of the determinant = |(2, 3, 4) ,(5, 6, 8),( 6x,9x, 12 x)| .

Find the value of the determinant = |(2, 3, 4),( 5, 6, 8),( 6x,9x ,12 x)|

Write the value of the determinant |[2, 3, 4], [5, 6, 8], [6x,9x,12x]| .

Write the value of the determinant |[2, 3, 4],[ 5, 6, 8],[ 6x,9x, 12 x]|

Write the value of the determinant |[2, 3, 4],[ 5, 6 ,8],[ 6x,9x, 12 x]|

Solve for x, |{:(4x,6x+2,8x+1),(6x+2,9x+3,12x),(8x+1,12x,16x+2):}| =0

If mean deviations about median of x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x is 30, then |x| equals:-

If mean deviations about median of x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x is 30, then |x| equals:-

The value of the determinant |(x+2,x+3,x+5),(x+4,x+6,x+9),(x+8,x+11,x+15)| is

For all nonzero values of x, (12x^(6) - 9x^(2))/(3x^2) = ?