Home
Class 12
MATHS
Find the value of, cos [tan^(-1) {sin (c...

Find the value of, `cos [tan^(-1) {sin (cot^(-1)x)}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos \left( \tan^{-1} \left( \sin \left( \cot^{-1} x \right) \right) \right) \), we will follow these steps: ### Step 1: Define the angle Let \( \theta = \cot^{-1} x \). This implies that \( \cot \theta = x \). ### Step 2: Construct a right triangle From the definition of cotangent, we can construct a right triangle where: - The adjacent side (base) is \( x \) - The opposite side (perpendicular) is \( 1 \) ### Step 3: Find the hypotenuse Using the Pythagorean theorem, we can find the hypotenuse \( h \): \[ h = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 4: Find \( \sin \theta \) Now, we can find \( \sin \theta \): \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 5: Substitute into the cosine function Now we need to evaluate \( \cos \left( \tan^{-1} \left( \sin \theta \right) \right) \). Let \( \alpha = \tan^{-1} \left( \sin \theta \right) \). Thus, we have: \[ \sin \theta = \frac{1}{\sqrt{x^2 + 1}} \] This means: \[ \tan \alpha = \sin \theta = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 6: Construct another right triangle for \( \alpha \) For the angle \( \alpha \): - The opposite side is \( 1 \) - The adjacent side is \( \sqrt{x^2 + 1} \) ### Step 7: Find the hypotenuse for \( \alpha \) Using the Pythagorean theorem again: \[ \text{Hypotenuse} = \sqrt{1^2 + \left( \sqrt{x^2 + 1} \right)^2} = \sqrt{1 + (x^2 + 1)} = \sqrt{x^2 + 2} \] ### Step 8: Find \( \cos \alpha \) Now we can find \( \cos \alpha \): \[ \cos \alpha = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 2}} \] ### Final Result Thus, the value of \( \cos \left( \tan^{-1} \left( \sin \left( \cot^{-1} x \right) \right) \right) \) is: \[ \cos \left( \tan^{-1} \left( \sin \left( \cot^{-1} x \right) \right) \right) = \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

: Find the value of cot (tan^-1 α + cot^-1 α).

Find the value of : sin (sin^(-1) x + cos^(-1) x)

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of sin^(-1) (sin 5) + cos^(-1) (cos 10) + tan^(-1) {tan(-6)} + cot^(-1) {cot(-10)}