Home
Class 12
MATHS
If P(A)= (1)/(2), P((B)/(A)) = (1)/(3), ...

If `P(A)= (1)/(2), P((B)/(A)) = (1)/(3), P((A)/(B))= (2)/(5)`, find P(B)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(B) \) using the given probabilities. Let's break it down step by step. ### Step 1: Write down the given probabilities. We have: - \( P(A) = \frac{1}{2} \) - \( P(B|A) = \frac{1}{3} \) - \( P(A|B) = \frac{2}{5} \) ### Step 2: Use the definition of conditional probability. The conditional probability \( P(B|A) \) can be expressed as: \[ P(B|A) = \frac{P(A \cap B)}{P(A)} \] From this, we can rearrange to find \( P(A \cap B) \): \[ P(A \cap B) = P(B|A) \cdot P(A) \] ### Step 3: Substitute the known values. Substituting the known values into the equation: \[ P(A \cap B) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} \] ### Step 4: Use the definition of conditional probability for \( P(A|B) \). The conditional probability \( P(A|B) \) can be expressed as: \[ P(A|B) = \frac{P(A \cap B)}{P(B)} \] Rearranging gives us: \[ P(A \cap B) = P(A|B) \cdot P(B) \] ### Step 5: Substitute \( P(A \cap B) \) into the equation. We already found \( P(A \cap B) = \frac{1}{6} \), so we can substitute this value: \[ \frac{1}{6} = \frac{2}{5} \cdot P(B) \] ### Step 6: Solve for \( P(B) \). To find \( P(B) \), we can rearrange the equation: \[ P(B) = \frac{1}{6} \cdot \frac{5}{2} \] Calculating this gives: \[ P(B) = \frac{5}{12} \] ### Final Answer: Thus, the probability \( P(B) \) is: \[ \boxed{\frac{5}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If P(A) = (2)/(5), P(B) = (1)/(3) , P(A cap B) = (1)/(5) , Find P((bar(A))/(bar(B))) .

If A and B be two events such that P(A)= (1)/(2)P(B) = (1)/(3) and P((A)/(B))=(1)/(4) then P(AnnB) equals

If A and B are two events such that P(A) = (1)/(4), P(B) = (1)/(2) and P(A cap B) = (1)/(8) , find P (not A and not B).

If P(A)= (1)/(4), P(B)= (1)/(3) and P(A U B)= (1)/(2) , prove that A and B are independent events

Let A,B,C be 3 events such that P(A//B)=(1)/(5) , P(B)=(1)/(2) , P(A//C)=(2)/(7) and P(C )=(1)/(2) , then P(B//A) is

If 2P(A) = P(B) =5/13 and P(A/B) = 2/5 find P(AcupB)

If A and B are two events such that P(A) = (1)/(4) ,P(B) = (1)/(2) and P(A nnB) = (1)/(8) , then P ( not A and not B) =

If A and B are events such that P(A'uuB') = (3)/(4), P(A'nnB') = (1)/(4) and P(A) = (1)/(3) , then find the value of P(A' nn B)

If P(A)=(2)/(5),P(B)=(3)/(10) and P(AcapB)=(1)/(5) then P((A')/(B')).P((B')/(A')) equals

If A and B are two events such that P(A)=(1)/(4),P(B)=(1)/(2)andP(AnnB)=(1)/(8) . Then, find P (not A and not B).