Home
Class 12
MATHS
y= log sqrt(tan x), find (dy)/(dx) at x=...

`y= log sqrt(tan x)`, find `(dy)/(dx)` at `x= (pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \(\frac{dy}{dx}\) for the function \(y = \log(\sqrt{\tan x})\) at \(x = \frac{\pi}{4}\), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \log(\sqrt{\tan x}) \] Using the property of logarithms, we can rewrite this as: \[ y = \frac{1}{2} \log(\tan x) \] ### Step 2: Differentiate using the chain rule To find \(\frac{dy}{dx}\), we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\tan x} \cdot \frac{d}{dx}(\tan x) \] We know that the derivative of \(\tan x\) is \(\sec^2 x\). Therefore, we have: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\tan x} \cdot \sec^2 x \] ### Step 3: Simplify the expression We can simplify the expression: \[ \frac{dy}{dx} = \frac{\sec^2 x}{2 \tan x} \] ### Step 4: Evaluate at \(x = \frac{\pi}{4}\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\): - We know that \(\tan\left(\frac{\pi}{4}\right) = 1\) - We also know that \(\sec\left(\frac{\pi}{4}\right) = \frac{1}{\cos\left(\frac{\pi}{4}\right)} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}\), so \(\sec^2\left(\frac{\pi}{4}\right) = 2\) Substituting these values into our derivative: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{4}} = \frac{2}{2 \cdot 1} = \frac{2}{2} = 1 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\) is: \[ \frac{dy}{dx} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x-y =pi

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If y= log (sin x) , then (dy)/(dx) is

If y=(log)_a x , find (dy)/(dx) .

If 4x+3y=log(4x-3y) , find (dy)/(dx)

If x = a sec^(3) theta, y =a tan ^(3) theta , then find (dy)/( dx) at theta = (pi)/(4) .

If y= e^(x) log tan 2x , than find (dy)/(dx)

If y=(tanx)^((tanx)^((tanx).... ∞) ,then find (dy)/(dx) at x=pi/4

If y=log(3x),\ \ x!=0 , find (dy)/(dx) .

If tan(x+y)+tan(x-y)=1 , find (dy)/(dx) .