Home
Class 12
MATHS
Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/...

Solve `2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\sin^{-1}x + \sin^{-1}(1-x) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the original equation: \[ 2\sin^{-1}x + \sin^{-1}(1-x) = \frac{\pi}{2} \] We can isolate \(\sin^{-1}(1-x)\) by moving it to the right side: \[ 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x) \] ### Step 2: Using the Inverse Trigonometric Identity We know from the properties of inverse trigonometric functions that: \[ \sin^{-1}y + \cos^{-1}y = \frac{\pi}{2} \] Thus, we can replace \(\sin^{-1}(1-x)\) with \(\cos^{-1}(x)\): \[ 2\sin^{-1}x = \cos^{-1}(1-x) \] ### Step 3: Converting to Cosine Using the identity \(\cos^{-1}y = \frac{\pi}{2} - \sin^{-1}y\), we can rewrite the equation: \[ 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x) \] This implies: \[ \cos(2\sin^{-1}x) = 1 - x \] ### Step 4: Applying the Double Angle Formula Using the double angle formula for cosine: \[ \cos(2a) = 1 - 2\sin^2(a) \] We can substitute \(a = \sin^{-1}x\): \[ \cos(2\sin^{-1}x) = 1 - 2\sin^2(\sin^{-1}x) = 1 - 2x^2 \] Thus, we have: \[ 1 - 2x^2 = 1 - x \] ### Step 5: Simplifying the Equation Now, we can simplify the equation: \[ 1 - 2x^2 = 1 - x \] Subtracting 1 from both sides gives: \[ -2x^2 = -x \] Multiplying through by -1 results in: \[ 2x^2 - x = 0 \] ### Step 6: Factoring the Equation Factoring out \(x\): \[ x(2x - 1) = 0 \] This gives us two solutions: \[ x = 0 \quad \text{or} \quad 2x - 1 = 0 \implies x = \frac{1}{2} \] ### Step 7: Final Solutions Thus, the solutions to the equation are: \[ x = 0 \quad \text{and} \quad x = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve 2 cos^(-1) x + sin^(-1) x = (2pi)/(3)

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)