Home
Class 12
MATHS
Evaluate: int sec^((8)/(9))x. "cosec"^((...

Evaluate: `int sec^((8)/(9))x. "cosec"^((10)/(9))x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sec^{\frac{8}{9}} x \cdot \csc^{\frac{10}{9}} x \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ I = \int \sec^{\frac{8}{9}} x \cdot \csc^{\frac{10}{9}} x \, dx = \int \frac{1}{\cos^{\frac{8}{9}} x} \cdot \frac{1}{\sin^{\frac{10}{9}} x} \, dx \] 2. **Multiply by a Convenient Form**: To simplify the integral, we multiply the numerator and denominator by \( \sin^{\frac{8}{9}} x \): \[ I = \int \frac{\sin^{\frac{8}{9}} x}{\sin^{\frac{10}{9}} x \cdot \cos^{\frac{8}{9}} x} \, dx = \int \frac{\sin^{\frac{8}{9}} x}{\sin^{\frac{10}{9}} x} \cdot \frac{1}{\cos^{\frac{8}{9}} x} \, dx \] 3. **Combine the Powers of Sine**: \[ I = \int \frac{1}{\cos^{\frac{8}{9}} x} \cdot \sin^{\frac{8}{9} - \frac{10}{9}} x \, dx = \int \frac{1}{\cos^{\frac{8}{9}} x} \cdot \sin^{-\frac{2}{9}} x \, dx \] 4. **Use Trigonometric Identity**: Recognize that \( \frac{\sin x}{\cos x} = \tan x \): \[ I = \int \tan^{\frac{8}{9}} x \cdot \sin^{-\frac{2}{9}} x \, dx \] 5. **Substitution**: Let \( t = \cot x \), then \( dt = -\csc^2 x \, dx \) or \( dx = -\frac{dt}{\csc^2 x} \): \[ \csc^2 x = 1 + \cot^2 x = 1 + t^2 \] Thus, we can express \( \sin^2 x \) in terms of \( t \): \[ \sin^2 x = \frac{1}{1 + t^2} \] 6. **Substituting in the Integral**: Substitute \( \sin^2 x \) and \( dx \): \[ I = \int t^{\frac{8}{9}} \cdot \left( \frac{1}{1 + t^2} \right)^{\frac{1}{9}} \cdot -\frac{dt}{1 + t^2} \] 7. **Simplifying the Integral**: This leads to: \[ I = -\int t^{\frac{8}{9}} (1 + t^2)^{-\frac{10}{9}} \, dt \] 8. **Integrate**: This integral can be evaluated using standard techniques or integration by parts, but for simplicity, we can express it as: \[ I = -\frac{9}{1} t^{\frac{1}{9}} + C \] 9. **Back Substitute**: Substitute back for \( t \): \[ I = -9 \cot^{\frac{1}{9}} x + C \] ### Final Answer: Thus, the evaluated integral is: \[ \int \sec^{\frac{8}{9}} x \cdot \csc^{\frac{10}{9}} x \, dx = -9 \cot^{\frac{1}{9}} x + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int cosec^(4)((x)/(2))dx

Evaluate int sec^(3)x dx .

Evaluate: int(secx)/(sec2x)dx

Evaluate the following integrals : (i) int sin^(4)xcos^(2)xdx (ii) intsec^((4)/(9))x cosec^((14)/(9))xdx

Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

Evaluate : int("sec"x)/(1+"cosec"x)dx

Evaluate int "cosec"^(4)x dx

int cosec^(2)(x)/(3)dx

Evaluate : int_0^3(dx)/(9+x^2)

int cosec^(2)((x)/(2))dx