Home
Class 12
MATHS
Evaluate: int (tan x-x)tan^(2)xdx...

Evaluate: `int (tan x-x)tan^(2)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (\tan x - x) \tan^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int (\tan x - x) \tan^2 x \, dx \] We know that \( \tan^2 x = \sec^2 x - 1 \). Thus, we can rewrite the integral as: \[ \int (\tan x - x)(\sec^2 x - 1) \, dx \] ### Step 2: Distribute the terms Now we distribute \( (\tan x - x) \) across \( (\sec^2 x - 1) \): \[ \int (\tan x - x) \sec^2 x \, dx - \int (\tan x - x) \, dx \] ### Step 3: Evaluate the first integral For the first integral \( \int (\tan x - x) \sec^2 x \, dx \), we can use substitution. Let: \[ t = \tan x - x \] Then, differentiating gives: \[ dt = \sec^2 x \, dx - dx = (\sec^2 x - 1) \, dx \] This implies: \[ dx = \frac{dt}{\sec^2 x - 1} \] However, we can also note that \( \sec^2 x = 1 + \tan^2 x \). ### Step 4: Evaluate the second integral Now, we evaluate the second integral: \[ \int (\tan x - x) \, dx \] This can be split into two separate integrals: \[ \int \tan x \, dx - \int x \, dx \] The integral of \( \tan x \) is: \[ -\ln |\cos x| + C \] And the integral of \( x \) is: \[ \frac{x^2}{2} + C \] ### Step 5: Combine results Now we combine our results: \[ \int (\tan x - x) \tan^2 x \, dx = \int (\tan x - x) \sec^2 x \, dx - \left( -\ln |\cos x| + \frac{x^2}{2} \right) \] ### Step 6: Final expression Thus, the final expression for the integral is: \[ \int (\tan x - x) \tan^2 x \, dx = \frac{(tan x - x)^2}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(tanx-x)tan^2x dx

Evaluate : int tan^(2) xdx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate int\tan5x\dx

Evaluate int tan^(3)x dx

Evaluate int tan x tan(x+1)dx .

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

Evaluate: int(tan^(-1)x)/(1+x^2)dx