Home
Class 12
MATHS
If A= (1)/(9) ((-8,1,4),(4,4,7),(1,-8,4)...

If `A= (1)/(9) ((-8,1,4),(4,4,7),(1,-8,4))`, prove that, `A^(-1)= A^(T)`. Hence solve the following system of equations:
`-8x + y + 4z= 0, 4x + 4y + 7z= 18, x- 8y + 4z= 9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first prove that \( A^{-1} = A^{T} \) and then use this result to solve the system of equations. ### Step 1: Find the Transpose of Matrix \( A \) Given: \[ A = \frac{1}{9} \begin{pmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{pmatrix} \] The transpose of \( A \), denoted \( A^{T} \), is obtained by swapping rows with columns: \[ A^{T} = \frac{1}{9} \begin{pmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{pmatrix} \] ### Step 2: Multiply \( A \) and \( A^{T} \) Next, we need to compute the product \( A \cdot A^{T} \): \[ A \cdot A^{T} = \left( \frac{1}{9} \begin{pmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{pmatrix} \right) \cdot \left( \frac{1}{9} \begin{pmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{pmatrix} \right) \] Calculating the product: 1. The element at (1,1): \[ = \frac{1}{81} \left( (-8)(-8) + (1)(1) + (4)(4) \right) = \frac{1}{81} (64 + 1 + 16) = \frac{81}{81} = 1 \] 2. The element at (1,2): \[ = \frac{1}{81} \left( (-8)(4) + (1)(4) + (4)(7) \right) = \frac{1}{81} (-32 + 4 + 28) = \frac{0}{81} = 0 \] 3. The element at (1,3): \[ = \frac{1}{81} \left( (-8)(1) + (1)(-8) + (4)(4) \right) = \frac{1}{81} (-8 - 8 + 16) = \frac{0}{81} = 0 \] 4. The element at (2,1): \[ = \frac{1}{81} \left( (4)(-8) + (4)(1) + (7)(4) \right) = \frac{1}{81} (-32 + 4 + 28) = \frac{0}{81} = 0 \] 5. The element at (2,2): \[ = \frac{1}{81} \left( (4)(4) + (4)(4) + (7)(7) \right) = \frac{1}{81} (16 + 16 + 49) = \frac{81}{81} = 1 \] 6. The element at (2,3): \[ = \frac{1}{81} \left( (4)(1) + (4)(-8) + (7)(4) \right) = \frac{1}{81} (4 - 32 + 28) = \frac{0}{81} = 0 \] 7. The element at (3,1): \[ = \frac{1}{81} \left( (1)(-8) + (-8)(1) + (4)(4) \right) = \frac{1}{81} (-8 - 8 + 16) = \frac{0}{81} = 0 \] 8. The element at (3,2): \[ = \frac{1}{81} \left( (1)(4) + (-8)(4) + (4)(7) \right) = \frac{1}{81} (4 - 32 + 28) = \frac{0}{81} = 0 \] 9. The element at (3,3): \[ = \frac{1}{81} \left( (1)(1) + (-8)(-8) + (4)(4) \right) = \frac{1}{81} (1 + 64 + 16) = \frac{81}{81} = 1 \] Thus, we have: \[ A \cdot A^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \] ### Step 3: Conclude that \( A^{-1} = A^{T} \) Since \( A \cdot A^{T} = I \), we conclude that: \[ A^{-1} = A^{T} \] ### Step 4: Solve the System of Equations Now we can solve the system of equations: \[ \begin{align*} -8x + y + 4z &= 0 \\ 4x + 4y + 7z &= 18 \\ x - 8y + 4z &= 9 \end{align*} \] We can represent this system in matrix form as: \[ \begin{pmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 18 \\ 9 \end{pmatrix} \] Using \( A^{-1} = A^{T} \): \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{T} \begin{pmatrix} 0 \\ 18 \\ 9 \end{pmatrix} \] Calculating: \[ A^{T} = \frac{1}{9} \begin{pmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{pmatrix} \] Now multiply \( A^{T} \) with the constants: \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{9} \begin{pmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 18 \\ 9 \end{pmatrix} \] Calculating each component: 1. For \( x \): \[ x = \frac{1}{9} \left( -8 \cdot 0 + 4 \cdot 18 + 1 \cdot 9 \right) = \frac{1}{9} (0 + 72 + 9) = \frac{81}{9} = 9 \] 2. For \( y \): \[ y = \frac{1}{9} \left( 1 \cdot 0 + 4 \cdot 18 - 8 \cdot 9 \right) = \frac{1}{9} (0 + 72 - 72) = \frac{0}{9} = 0 \] 3. For \( z \): \[ z = \frac{1}{9} \left( 4 \cdot 0 + 7 \cdot 18 + 4 \cdot 9 \right) = \frac{1}{9} (0 + 126 + 36) = \frac{162}{9} = 18 \] Thus, the solution to the system of equations is: \[ x = 9, \quad y = 0, \quad z = 18 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations: 4/x+3y=8,\ \ \ 6/x-4y=-5

Solve the following system of equations graphically : 2x + 3y = 8 ; x + 4y = 9

Solve the following system of equations by matrix method. 3x-2y + 3z= 8 2x + y-z = 1 4x-3y + 2z = 4

Solve the following system of equations: 0. 4 x+0. 3 y=1. 7 ,\ \ \ 0. 7 x-0. 2 y=0. 8

Solve the following system of equations: x-y+z=4,\ \ \ \ x-2y-2z=9,\ \ \ \ 2x+y+3z=1

Solve the following system of equations using matrix method: 2/x + 3/y + 10/z = 4 4/x - 6/y + 5/z=1 6/x + 9/y - 20/z=2

Solve the following system of equations by matrix method: 6x-12 y+25 z=4,\ \ 4x+15 y-20 z=3,\ \ 2x+18 y+15 z=10

Solve the following systems of liner a equations by cramer rule . (i)2x-y+3z=8 , -x+2y+z=4 , 3x+y-4z=0

Solve the following system of equations by matrix method: 8x+4y+3z=18 ,\ \ 2x+y+z=5,\ \ x+2y+z=5

Solve the following system of equations by matrix method: 3x+4y+7z=14 ,\ \ 2x-y+3z=4,\ \ x+2y-3z=0