Home
Class 12
MATHS
Evaluate: int (e^(x) (x^(2) + 1))/((x+1)...

Evaluate: `int (e^(x) (x^(2) + 1))/((x+1)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{e^x (x^2 + 1)}{(x + 1)^2} \, dx, \] we can use the technique of integration by parts and the known formula for integrals involving \( e^x \). ### Step 1: Rewrite the Integral We can rewrite the integrand by manipulating the expression: \[ I = \int \frac{e^x (x^2 + 1)}{(x + 1)^2} \, dx = \int \frac{e^x (x^2 - 1 + 2)}{(x + 1)^2} \, dx. \] This allows us to separate the integral into two parts: \[ I = \int \frac{e^x (x^2 - 1)}{(x + 1)^2} \, dx + 2 \int \frac{e^x}{(x + 1)^2} \, dx. \] ### Step 2: Factor the First Integral Notice that \( x^2 - 1 \) can be factored as \( (x - 1)(x + 1) \): \[ I = \int \frac{e^x (x - 1)(x + 1)}{(x + 1)^2} \, dx + 2 \int \frac{e^x}{(x + 1)^2} \, dx. \] This simplifies to: \[ I = \int e^x \frac{x - 1}{x + 1} \, dx + 2 \int \frac{e^x}{(x + 1)^2} \, dx. \] ### Step 3: Apply Integration by Parts For the first integral \( \int e^x \frac{x - 1}{x + 1} \, dx \), we can use integration by parts. Let: - \( u = \frac{x - 1}{x + 1} \) and \( dv = e^x \, dx \). Then, we need to find \( du \) and \( v \): \[ du = \frac{(x + 1)(1) - (x - 1)(1)}{(x + 1)^2} \, dx = \frac{2}{(x + 1)^2} \, dx, \] \[ v = e^x. \] Now, applying integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int e^x \frac{x - 1}{x + 1} \, dx = e^x \frac{x - 1}{x + 1} - \int e^x \frac{2}{(x + 1)^2} \, dx. \] ### Step 4: Combine the Integrals Now substitute back into the expression for \( I \): \[ I = \left( e^x \frac{x - 1}{x + 1} - \int e^x \frac{2}{(x + 1)^2} \, dx \right) + 2 \int \frac{e^x}{(x + 1)^2} \, dx. \] The integrals involving \( \int e^x \frac{2}{(x + 1)^2} \, dx \) will cancel out: \[ I = e^x \frac{x - 1}{x + 1} + \int e^x \frac{2}{(x + 1)^2} \, dx - \int e^x \frac{2}{(x + 1)^2} \, dx. \] Thus, the integral simplifies to: \[ I = e^x \frac{x - 1}{x + 1} + C, \] where \( C \) is the constant of integration. ### Final Answer The evaluated integral is: \[ \int \frac{e^x (x^2 + 1)}{(x + 1)^2} \, dx = e^x \frac{x - 1}{x + 1} + C. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -B|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x+1+e^x)\ dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(x+1)+e^x\ dx

Evaluate: int(e^x)/((1+e^x)^2)dx

Evaluate: int(x e^(x)dx)/((x+1)^(2))

Evaluate: int(e^x x)/((x+1)^2)dx

Evaluate: int(e^(2x))/(1+e^x)dx

Evaluate: int(e^x)/((1+e^x)^2)\ dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx