Home
Class 12
MATHS
If vec(a)= 3hat(i) + hat(j) + 2hat(k) an...

If `vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k)`, then the magnitude of `vec(b) xx vec(a)` is

A

8

B

`-8`

C

`8sqrt3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the cross product of vectors \(\vec{a}\) and \(\vec{b}\), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{a} = 3\hat{i} + 1\hat{j} + 2\hat{k} \] \[ \vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k} \] ### Step 2: Set up the determinant for the cross product The cross product \(\vec{b} \times \vec{a}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \vec{b} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 4 \\ 3 & 1 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant To compute the determinant, we can expand it as follows: \[ \vec{b} \times \vec{a} = \hat{i} \begin{vmatrix} -2 & 4 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -2 \\ 3 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -2 & 4 \\ 1 & 2 \end{vmatrix} = (-2)(2) - (4)(1) = -4 - 4 = -8 \] So, we have \(-8\hat{i}\). 2. For \(-\hat{j}\): \[ \begin{vmatrix} 2 & 4 \\ 3 & 2 \end{vmatrix} = (2)(2) - (4)(3) = 4 - 12 = -8 \] So, we have \(+8\hat{j}\) (since it is subtracted). 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -2 \\ 3 & 1 \end{vmatrix} = (2)(1) - (-2)(3) = 2 + 6 = 8 \] So, we have \(+8\hat{k}\). Putting it all together: \[ \vec{b} \times \vec{a} = -8\hat{i} + 8\hat{j} + 8\hat{k} \] ### Step 4: Find the magnitude of the cross product The magnitude of \(\vec{b} \times \vec{a}\) is given by: \[ |\vec{b} \times \vec{a}| = \sqrt{(-8)^2 + (8)^2 + (8)^2} \] Calculating: \[ = \sqrt{64 + 64 + 64} = \sqrt{192} = \sqrt{64 \times 3} = 8\sqrt{3} \] ### Final Answer The magnitude of \(\vec{b} \times \vec{a}\) is: \[ \boxed{8\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(A) = 2hat(i) + 7 hat(j) -2hat(k) and vec(B) = 2 hat(i) - 3 hat(j) + 3hat(k) find (i) the magnitude of each other (ii) vec(A) + vec(B) , (iii) vec(A) - vec(B)

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :