Home
Class 12
MATHS
Find the unit vector perpendicular to bo...

Find the unit vector perpendicular to both `2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector perpendicular to both vectors \( \mathbf{A} = 2\hat{i} + 3\hat{j} + \hat{k} \) and \( \mathbf{B} = \hat{i} - \hat{j} + 4\hat{k} \), we will follow these steps: ### Step 1: Define the vectors Let: \[ \mathbf{A} = 2\hat{i} + 3\hat{j} + 1\hat{k} \] \[ \mathbf{B} = 1\hat{i} - 1\hat{j} + 4\hat{k} \] ### Step 2: Calculate the cross product \( \mathbf{A} \times \mathbf{B} \) To find a vector perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \), we compute the cross product \( \mathbf{A} \times \mathbf{B} \) using the determinant of a matrix: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 1 \\ 1 & -1 & 4 \end{vmatrix} \] ### Step 3: Expand the determinant Calculating the determinant, we have: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 3 & 1 \\ -1 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 3 & 1 \\ -1 & 4 \end{vmatrix} = (3 \cdot 4) - (1 \cdot -1) = 12 + 1 = 13 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} = (2 \cdot 4) - (1 \cdot 1) = 8 - 1 = 7 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = (2 \cdot -1) - (3 \cdot 1) = -2 - 3 = -5 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = 13\hat{i} - 7\hat{j} - 5\hat{k} \] ### Step 4: Find the magnitude of \( \mathbf{A} \times \mathbf{B} \) The magnitude \( |\mathbf{A} \times \mathbf{B}| \) is given by: \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{(13)^2 + (-7)^2 + (-5)^2} = \sqrt{169 + 49 + 25} = \sqrt{243} \] ### Step 5: Calculate the unit vector The unit vector \( \mathbf{n} \) in the direction of \( \mathbf{A} \times \mathbf{B} \) is given by: \[ \mathbf{n} = \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} = \frac{13\hat{i} - 7\hat{j} - 5\hat{k}}{\sqrt{243}} \] ### Step 6: Simplify the unit vector We can simplify \( \sqrt{243} \): \[ \sqrt{243} = \sqrt{81 \cdot 3} = 9\sqrt{3} \] Thus, the unit vector is: \[ \mathbf{n} = \frac{13}{9\sqrt{3}}\hat{i} - \frac{7}{9\sqrt{3}}\hat{j} - \frac{5}{9\sqrt{3}}\hat{k} \] ### Final Answer The unit vector perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \) is: \[ \mathbf{n} = \frac{13}{9\sqrt{3}}\hat{i} - \frac{7}{9\sqrt{3}}\hat{j} - \frac{5}{9\sqrt{3}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

What is the unit vector perpendicular to the following Vector 2hat(i)+2hat(j)-hat(k) and 6hat(i)-3hat(j)+2hat(k)?

A vector perpendicular to hat(i)+hat(j)+hat(k) is

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the unit vector perpendicular to the plane vec rdot(2 hat i+ hat j+2 hat k)=5.

Find a unit vector perpendicular to both the vectors hat i-2 hat j+3 hat ka n d hat i+2 hat j- hat kdot

Find a vector of magnitude 15, which is perpendicular to both the vectors (4hat(i) -hat(j)+8hat(k)) and (-hat(j)+hat(k)).

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is