Home
Class 12
MATHS
Given, vec(a)= 3hat(i) - hat(j) and vec(...

Given, `vec(a)= 3hat(i) - hat(j) and vec(b)= 2hat(i) + hat(j) - 3hat(k)`. Express `vec(b) = vec(b)_(1) + vec(b)_(2)` where `vec(b)_(1)` is parallel to `vec(a) and vec(b)_(2)` is perpendicular to `vec(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \(\vec{b}\) as the sum of two vectors: \(\vec{b}_1\) (which is parallel to \(\vec{a}\)) and \(\vec{b}_2\) (which is perpendicular to \(\vec{a}\)). Given: \[ \vec{a} = 3\hat{i} - \hat{j} \] \[ \vec{b} = 2\hat{i} + \hat{j} - 3\hat{k} \] ### Step 1: Find the unit vector of \(\vec{a}\) First, we need to find the unit vector of \(\vec{a}\): \[ |\vec{a}| = \sqrt{(3)^2 + (-1)^2} = \sqrt{9 + 1} = \sqrt{10} \] The unit vector \(\hat{a}\) is: \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{3\hat{i} - \hat{j}}{\sqrt{10}} \] ### Step 2: Express \(\vec{b}_1\) Let \(\vec{b}_1 = k\hat{a}\), where \(k\) is a scalar. Thus: \[ \vec{b}_1 = k\left(\frac{3\hat{i} - \hat{j}}{\sqrt{10}}\right) = \frac{3k}{\sqrt{10}}\hat{i} - \frac{k}{\sqrt{10}}\hat{j} \] ### Step 3: Express \(\vec{b}_2\) Now, we can express \(\vec{b}\) as: \[ \vec{b} = \vec{b}_1 + \vec{b}_2 \] Let \(\vec{b}_2 = p\hat{i} + q\hat{j} + r\hat{k}\). ### Step 4: Set up the equation Substituting \(\vec{b}_1\) and \(\vec{b}_2\) into the equation gives: \[ 2\hat{i} + \hat{j} - 3\hat{k} = \left(\frac{3k}{\sqrt{10}} + p\right)\hat{i} + \left(-\frac{k}{\sqrt{10}} + q\right)\hat{j} + r\hat{k} \] ### Step 5: Compare coefficients From the equation, we can compare coefficients: 1. For \(\hat{i}\): \[ \frac{3k}{\sqrt{10}} + p = 2 \quad \text{(1)} \] 2. For \(\hat{j}\): \[ -\frac{k}{\sqrt{10}} + q = 1 \quad \text{(2)} \] 3. For \(\hat{k}\): \[ r = -3 \quad \text{(3)} \] ### Step 6: Use the perpendicular condition Since \(\vec{b}_2\) is perpendicular to \(\vec{a}\), we have: \[ \vec{a} \cdot \vec{b}_2 = 0 \] This gives: \[ 3p - q = 0 \quad \text{(4)} \] ### Step 7: Solve the equations From equation (4), we can express \(q\) in terms of \(p\): \[ q = 3p \] Substituting \(q = 3p\) into equation (2): \[ -\frac{k}{\sqrt{10}} + 3p = 1 \quad \text{(5)} \] Now substituting \(p\) from equation (1): \[ p = 2 - \frac{3k}{\sqrt{10}} \] Substituting this into equation (5): \[ -\frac{k}{\sqrt{10}} + 3\left(2 - \frac{3k}{\sqrt{10}}\right) = 1 \] This simplifies to: \[ -\frac{k}{\sqrt{10}} + 6 - \frac{9k}{\sqrt{10}} = 1 \] \[ 6 - \frac{10k}{\sqrt{10}} = 1 \] \[ \frac{10k}{\sqrt{10}} = 5 \implies k = \frac{5\sqrt{10}}{10} = \frac{\sqrt{10}}{2} \] ### Step 8: Find \(p\) and \(q\) Substituting \(k\) back into the equations: \[ p = 2 - \frac{3(\sqrt{10}/2)}{\sqrt{10}} = 2 - \frac{3}{2} = \frac{1}{2} \] \[ q = 3p = 3 \cdot \frac{1}{2} = \frac{3}{2} \] ### Step 9: Write \(\vec{b}_2\) Now we have: \[ \vec{b}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k} \] ### Step 10: Write \(\vec{b}_1\) Substituting \(k\) into \(\vec{b}_1\): \[ \vec{b}_1 = \frac{\sqrt{10}}{2}\left(\frac{3\hat{i} - \hat{j}}{\sqrt{10}}\right) = \frac{3}{2}\hat{i} - \frac{1}{2}\hat{j} \] ### Final Result Thus, we can express \(\vec{b}\) as: \[ \vec{b} = \vec{b}_1 + \vec{b}_2 \] Where: \[ \vec{b}_1 = \frac{3}{2}\hat{i} - \frac{1}{2}\hat{j} \] \[ \vec{b}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What is the vector component of vec(A) in the direction of vec(B) ?

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.