Home
Class 12
MATHS
Prove that lines vec( r)= (hat(i)+ hat(j...

Prove that lines `vec( r)= (hat(i)+ hat(j) + hat(k))+ t(hat(i) - hat(j) + hat(k)) and vec(r ) = (3hat(i) - hat(k)) + s(4hat(j) - 16hat(k))` intersect. Also find the position vector of their point of intersection

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the lines given by the equations \[ \vec{r_1} = (\hat{i} + \hat{j} + \hat{k}) + t(\hat{i} - \hat{j} + \hat{k}) \] and \[ \vec{r_2} = (3\hat{i} - \hat{k}) + s(4\hat{j} - 16\hat{k}) \] intersect, we will express both lines in terms of their coordinates and then set them equal to find the values of parameters \(t\) and \(s\). ### Step 1: Express the first line in terms of coordinates From the first line equation: \[ \vec{r_1} = (\hat{i} + \hat{j} + \hat{k}) + t(\hat{i} - \hat{j} + \hat{k}) \] We can expand this: \[ \vec{r_1} = (1 + t)\hat{i} + (1 - t)\hat{j} + (1 + t)\hat{k} \] Thus, the coordinates of the first line are: \[ x_1 = 1 + t, \quad y_1 = 1 - t, \quad z_1 = 1 + t \] ### Step 2: Express the second line in terms of coordinates From the second line equation: \[ \vec{r_2} = (3\hat{i} - \hat{k}) + s(4\hat{j} - 16\hat{k}) \] We can expand this: \[ \vec{r_2} = 3\hat{i} + (4s)\hat{j} + (-1 - 16s)\hat{k} \] Thus, the coordinates of the second line are: \[ x_2 = 3, \quad y_2 = 4s, \quad z_2 = -1 - 16s \] ### Step 3: Set the coordinates equal to find \(t\) and \(s\) For the lines to intersect, we must have: 1. \(1 + t = 3\) 2. \(1 - t = 4s\) 3. \(1 + t = -1 - 16s\) #### Solving the first equation: From \(1 + t = 3\): \[ t = 3 - 1 = 2 \] #### Solving the second equation: Substituting \(t = 2\) into \(1 - t = 4s\): \[ 1 - 2 = 4s \implies -1 = 4s \implies s = -\frac{1}{4} \] #### Solving the third equation: Now, substituting \(t = 2\) and \(s = -\frac{1}{4}\) into \(1 + t = -1 - 16s\): \[ 1 + 2 = -1 - 16\left(-\frac{1}{4}\right) \] \[ 3 = -1 + 4 \] \[ 3 = 3 \] This confirms that both equations are satisfied. ### Step 4: Find the point of intersection Now, we can find the coordinates of the point of intersection by substituting \(t = 2\) into the first line's coordinates: \[ x = 1 + t = 1 + 2 = 3 \] \[ y = 1 - t = 1 - 2 = -1 \] \[ z = 1 + t = 1 + 2 = 3 \] Thus, the point of intersection is: \[ (3, -1, 3) \] ### Final Result The lines intersect at the point: \[ \vec{P} = 3\hat{i} - \hat{j} + 3\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Show that the lines vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d vec r=(4 hat i- hat k)+mu(2 hat i+3 hat k) are coplanar. Also, find the plane containing these two lines.

The position vector of the points P and Q are 5 hat i+7 hat j-2 hat k and -3 hat i+3 hat j+6 hat k , respectively. Vector vec A=3 hat i- hat j+ hat k passes through point P and vector vec B=-3 hat i+2 hat j+4 hat k passes through point Q . A third vector 2 hat i+7 hat j-5 hat k intersects vectors A and Bdot Find the position vectors of points of intersection.

Show that the lines vec r=3 hat i+2 hat j-4 hat k+lambda( hat i+2 hat j+2 hat k); vec r=5 hat i-\ 2 hat j+mu(3 hat i+2 hat j+6 hat k) ; are intersecting. Hence find their point of intersection.

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is