Home
Class 12
MATHS
Find the area of the region {(x,y): x^(2...

Find the area of the region `{(x,y): x^(2)+y^(2) le 1 le x + y}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by the inequalities \( x^2 + y^2 \leq 1 \) and \( x + y \geq 1 \), we can follow these steps: ### Step 1: Understand the inequalities The inequality \( x^2 + y^2 \leq 1 \) represents a circle centered at the origin (0,0) with a radius of 1. The inequality \( x + y \geq 1 \) represents the area above the line \( x + y = 1 \). ### Step 2: Plot the region We will sketch the circle and the line: - The circle \( x^2 + y^2 = 1 \) intersects the axes at points (1,0), (0,1), (-1,0), and (0,-1). - The line \( x + y = 1 \) intersects the axes at points (1,0) and (0,1). ### Step 3: Identify the area of interest We need to find the area that lies inside the circle and above the line. The area of interest is bounded by the arc of the circle and the line segment from (1,0) to (0,1). ### Step 4: Set up the integration To find the area, we will set up an integral. We can express the area as: \[ \text{Area} = \int_0^1 \left( \text{upper curve} - \text{lower curve} \right) \, dx \] Where: - The upper curve is given by the circle: \( y = \sqrt{1 - x^2} \) - The lower curve is given by the line: \( y = 1 - x \) Thus, we have: \[ \text{Area} = \int_0^1 \left( \sqrt{1 - x^2} - (1 - x) \right) \, dx \] ### Step 5: Solve the integral Now we will compute the integral: \[ \text{Area} = \int_0^1 \left( \sqrt{1 - x^2} - 1 + x \right) \, dx \] This can be split into two separate integrals: \[ \text{Area} = \int_0^1 \sqrt{1 - x^2} \, dx - \int_0^1 1 \, dx + \int_0^1 x \, dx \] Calculating each integral: 1. The integral \( \int_0^1 \sqrt{1 - x^2} \, dx \) is known to equal \( \frac{\pi}{4} \). 2. The integral \( \int_0^1 1 \, dx = 1 \). 3. The integral \( \int_0^1 x \, dx = \frac{1}{2} \). Putting it all together: \[ \text{Area} = \frac{\pi}{4} - 1 + \frac{1}{2} \] \[ \text{Area} = \frac{\pi}{4} - \frac{2}{2} + \frac{1}{2} = \frac{\pi}{4} - \frac{1}{2} \] ### Final Result Thus, the area of the region is: \[ \text{Area} = \frac{\pi}{4} - \frac{1}{2} \text{ square units.} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Find the area of the region {(x, y) : x^(2) + y^(2) le 4, x + y ge 2} , using the method of integration.

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

The area of the region R={(x,y)//x^(2)le y le x} is

Find the area of the region {(x , y): x^2+y^2lt=1lt=x+y}dot

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }

The area of the region {(x,y):x^(2)+y^(2)le5,||x|-|y||ge1 is

Using integration, find the area of the following region : {(x, y) : x^(2) + y^(2) lt 1 le x + y}