Home
Class 11
MATHS
If A,B,C,D are angles of a quadrilateral...

If A,B,C,D are angles of a quadrilateral, then sin A + sin (B+ C + D) = (i) 0 (ii) 1 (iii) 2 (iv) None of these

A

0

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the relationship between the angles of a quadrilateral and the sine function. ### Step-by-Step Solution: 1. **Understanding the angles of a quadrilateral**: The sum of the angles of a quadrilateral is given by the formula: \[ A + B + C + D = 360^\circ \quad \text{(or } 2\pi \text{ radians)} \] 2. **Rearranging the angles**: We can express \(B + C + D\) in terms of \(A\): \[ B + C + D = 360^\circ - A \quad \text{(or } 2\pi - A \text{ radians)} \] 3. **Using the sine function**: We need to evaluate \( \sin A + \sin(B + C + D) \). Substituting the expression for \(B + C + D\): \[ \sin A + \sin(360^\circ - A) \quad \text{(or } \sin(2\pi - A) \text{)} \] 4. **Applying the sine identity**: We know from trigonometric identities that: \[ \sin(360^\circ - A) = -\sin A \quad \text{(or } \sin(2\pi - A) = -\sin A \text{)} \] 5. **Combining the sine values**: Now we can combine the sine values: \[ \sin A + \sin(360^\circ - A) = \sin A - \sin A = 0 \] 6. **Conclusion**: Therefore, we find that: \[ \sin A + \sin(B + C + D) = 0 \] The correct answer is (i) 0.
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - B|10 Videos
  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - C|10 Videos
  • MEASURES OF DISPERSION

    ICSE|Exercise CHAPTER TEST|6 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos

Similar Questions

Explore conceptually related problems

If A ,B ,C ,D are angles of a cyclic quadrilateral, then prove that cos A+cos B+cos C+cos D=0

If A,B,C,D are the angles of a quadrilateral, prove that "cos"1/2(A+B)+"cos"1/2(C+D)=0 .

Statement I: If A,B,C,D are angles of a cyclic quadrilateral then sum sin A=0. Statement II: If A, B, C, D are angles of cyclic quadrilateral then sum cos A=0.

If A ,\ B ,\ C ,\ D are angles of a cyclic quadrilateral, prove that cos A+cos B+cos C+cos D=0.

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4) , prove that A=B=C=D= pi//2

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(16) , prove that A=B=C=D=pi/2

If cosA+cos^2A=1 , then sin^2A+sin^4A= (a) -1 (b) 0 (c) 1 (d) None of these

If A,B,C and D are the angles of cyclic quadrilateral, prove that: i) cosA + cosB+cosC+cosD = 0 ii) cos(180^(@)-A)+cos(180^(@)+B)+cos(180^(@)+C)-sin(90^(@)+D) = 0

If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is