Home
Class 11
MATHS
Evaluate: lim(xto0)(tan8x)/(sin3x)...

Evaluate: `lim_(xto0)(tan8x)/(sin3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\tan(8x)}{\sin(3x)} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{\tan(8x)}{\sin(3x)} = \lim_{x \to 0} \frac{\tan(8x)}{8x} \cdot \frac{8x}{\sin(3x)} \] This allows us to separate the limit into two parts. ### Step 2: Apply standard limits Using the standard limits: \[ \lim_{x \to 0} \frac{\tan(ax)}{ax} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{\sin(ax)}{ax} = 1 \] we can evaluate each part: \[ \lim_{x \to 0} \frac{\tan(8x)}{8x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{\sin(3x)}{3x} = 1 \] ### Step 3: Rewrite the limit with constants To utilize these limits, we rewrite our expression: \[ \lim_{x \to 0} \frac{\tan(8x)}{\sin(3x)} = \lim_{x \to 0} \left( \frac{\tan(8x)}{8x} \cdot \frac{8}{\frac{\sin(3x)}{3x}} \cdot \frac{3x}{3} \right) \] This gives us: \[ = \lim_{x \to 0} \frac{\tan(8x)}{8x} \cdot \frac{8}{\frac{\sin(3x)}{3x}} \cdot 3 \] ### Step 4: Evaluate the limits Now we can evaluate the limits: \[ = 1 \cdot \frac{8}{1} \cdot 3 = 8 \cdot 3 = 24 \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\tan(8x)}{\sin(3x)} = \frac{8}{3} \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - B|10 Videos
  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - C|10 Videos
  • MEASURES OF DISPERSION

    ICSE|Exercise CHAPTER TEST|6 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)(tan8x)/(sin2x)

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

Evaluate: lim_(xrarr0)(sin5x)/(tan3x) .

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate, lim_(xto0) (sinx-2sin3x+sin5x)/(x)

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))