Home
Class 11
MATHS
Prove that tan [7(1)/(2)]^0 = (sqrt(3) -...

Prove that `tan [7(1)/(2)]^0 = (sqrt(3) - sqrt(2)) (sqrt(2) - 1)`.

Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - B|10 Videos
  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - C|10 Videos
  • MEASURES OF DISPERSION

    ICSE|Exercise CHAPTER TEST|6 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos

Similar Questions

Explore conceptually related problems

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Prove that, cot 7 1/2 ^@ or tan 82 1/2 ^@ = (sqrt(3)+sqrt(2))(sqrt(2)+1) or sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

Prove that: "tan"142""(1^0)/2=2+sqrt(2)-sqrt(3)-sqrt(6)

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that: "tan"pi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that: "tan"pi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))