Home
Class 11
MATHS
Differentiate by 1^(st), principle, f(x)...

Differentiate by `1^(st)`, principle, f(x) = sec (1 - 2x).

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \sec(1 - 2x) \) using the first principle of differentiation, we follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) using the first principle is given by: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### Step 2: Substitute the function into the definition Substituting \( f(x) = \sec(1 - 2x) \): \[ f'(x) = \lim_{h \to 0} \frac{\sec(1 - 2(x + h)) - \sec(1 - 2x)}{h} \] ### Step 3: Simplify the expression This can be rewritten as: \[ f'(x) = \lim_{h \to 0} \frac{\sec(1 - 2x - 2h) - \sec(1 - 2x)}{h} \] ### Step 4: Use the identity for secant Recall that \( \sec(x) = \frac{1}{\cos(x)} \). Thus, we can express the difference of secants: \[ f'(x) = \lim_{h \to 0} \frac{\frac{1}{\cos(1 - 2x - 2h)} - \frac{1}{\cos(1 - 2x)}}{h} \] ### Step 5: Combine the fractions Finding a common denominator gives: \[ f'(x) = \lim_{h \to 0} \frac{\cos(1 - 2x) - \cos(1 - 2x - 2h)}{h \cdot \cos(1 - 2x) \cdot \cos(1 - 2x - 2h)} \] ### Step 6: Use the cosine difference identity Using the identity \( \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \): \[ A = 1 - 2x, \quad B = 1 - 2x - 2h \] Thus: \[ f'(x) = \lim_{h \to 0} \frac{-2 \sin\left(1 - 2x - h\right) \sin(h)}{h \cdot \cos(1 - 2x) \cdot \cos(1 - 2x - 2h)} \] ### Step 7: Simplify the limit As \( h \to 0 \), \( \sin(h) \approx h \): \[ f'(x) = \lim_{h \to 0} \frac{-2 \sin(1 - 2x) \cdot h}{h \cdot \cos(1 - 2x) \cdot \cos(1 - 2x)} \] This simplifies to: \[ f'(x) = \frac{-2 \sin(1 - 2x)}{\cos^2(1 - 2x)} \] ### Step 8: Final result Using the identity \( \tan(x) = \frac{\sin(x)}{\cos(x)} \): \[ f'(x) = -2 \tan(1 - 2x) \sec(1 - 2x) \] ### Conclusion Thus, the derivative of \( f(x) = \sec(1 - 2x) \) is: \[ f'(x) = -2 \tan(1 - 2x) \sec(1 - 2x) \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - B|10 Videos
  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - C|10 Videos
  • MEASURES OF DISPERSION

    ICSE|Exercise CHAPTER TEST|6 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos

Similar Questions

Explore conceptually related problems

Differentiate by 1^(st) principal f(x) = tan (1-2x)

Differentiate by 1^(st) principle : f(x)=sqrt(3x-4)

Differentiate using 1^(st) principle : f(x)=(1)/(sqrt(2x+3))

Differentiate (x+1/x)^x

Differentiate from first principles: 1. 2x

Differentiate from first principles: 2. (x-1)^(2)

Differentiate from first principles: 8. x+ (1)/( x)

Differentiate from first principles: 7. (1)/( sqrt (x+1))

Differentiate from first principles: 12. (x^2+1)/( x)

Differentiate from first principles: 11. (x+1)(2x-3)