Home
Class 8
MATHS
Find the cube-roots of : 729xx8000...

Find the cube-roots of :
`729xx8000`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cube roots of \( 729 \times 8000 \), we can follow these steps: ### Step 1: Factor the numbers First, we need to factor both \( 729 \) and \( 8000 \). - **Factoring 729:** \[ 729 = 3 \times 243 \] \[ 243 = 3 \times 81 \] \[ 81 = 3 \times 27 \] \[ 27 = 3 \times 9 \] \[ 9 = 3 \times 3 \] Thus, \( 729 = 3^6 \). - **Factoring 8000:** \[ 8000 = 8 \times 1000 \] \[ 8 = 2^3 \] \[ 1000 = 10^3 = (2 \times 5)^3 = 2^3 \times 5^3 \] Therefore, \( 8000 = 2^3 \times (2^3 \times 5^3) = 2^6 \times 5^3 \). ### Step 2: Combine the factors Now, we can combine the factors of \( 729 \) and \( 8000 \): \[ 729 \times 8000 = 3^6 \times (2^6 \times 5^3) = 3^6 \times 2^6 \times 5^3 \] ### Step 3: Find the cube root To find the cube root of \( 729 \times 8000 \), we apply the cube root to each factor: \[ \sqrt[3]{729 \times 8000} = \sqrt[3]{3^6} \times \sqrt[3]{2^6} \times \sqrt[3]{5^3} \] Using the property of exponents: \[ \sqrt[3]{3^6} = 3^{6/3} = 3^2 = 9 \] \[ \sqrt[3]{2^6} = 2^{6/3} = 2^2 = 4 \] \[ \sqrt[3]{5^3} = 5^{3/3} = 5^1 = 5 \] ### Step 4: Multiply the results Now, we multiply the results: \[ 9 \times 4 \times 5 = 36 \times 5 = 180 \] ### Final Answer Thus, the cube root of \( 729 \times 8000 \) is \( 180 \).
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE - ROOTS

    ICSE|Exercise EXERCISE 4(A)|39 Videos
  • CONSTRUCTION (USING RULER AND COMPASSES ONLY)

    ICSE|Exercise EXERCISE 18(D)|10 Videos
  • DATA HANDLING

    ICSE|Exercise EXERCISE 22 (B) |10 Videos

Similar Questions

Explore conceptually related problems

Find the cube-roots of : 64

Find the cube-roots of : 3375

Find the cube-roots of : 1728

Find the cube-roots of : 343

Find the cube-roots of : 64xx729

Find the cube-roots of : -2197

Find the cube-roots of : -5832

Find the cube-roots of : 2.744

Find the cube-roots of : 9.261

Find the cube-roots of : 27/64