Home
Class 8
MATHS
Find the cube-roots of : -27/125...

Find the cube-roots of :
`-27/125`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cube root of \(-\frac{27}{125}\), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ a = -\frac{27}{125} \] ### Step 2: Express the cube root We want to find: \[ a^{\frac{1}{3}} = \left(-\frac{27}{125}\right)^{\frac{1}{3}} \] ### Step 3: Factor the numerator and denominator Next, we can factor the numerator and denominator: \[ -\frac{27}{125} = -\frac{3^3}{5^3} \] ### Step 4: Rewrite the expression Now we rewrite the expression using the factors: \[ \left(-\frac{3^3}{5^3}\right)^{\frac{1}{3}} \] ### Step 5: Apply the property of exponents Using the property of exponents \((a^m)^{n} = a^{m \cdot n}\), we can simplify: \[ \left(-3^3\right)^{\frac{1}{3}} \div \left(5^3\right)^{\frac{1}{3}} = \frac{-3^{3 \cdot \frac{1}{3}}}{5^{3 \cdot \frac{1}{3}}} \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{-3^1}{5^1} = \frac{-3}{5} \] ### Final Answer Thus, the cube root of \(-\frac{27}{125}\) is: \[ -\frac{3}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE - ROOTS

    ICSE|Exercise EXERCISE 4(A)|39 Videos
  • CONSTRUCTION (USING RULER AND COMPASSES ONLY)

    ICSE|Exercise EXERCISE 18(D)|10 Videos
  • DATA HANDLING

    ICSE|Exercise EXERCISE 22 (B) |10 Videos

Similar Questions

Explore conceptually related problems

Find the cube-roots of : -512

Find the cube-roots of : 64

Find the cube-roots of : -2197

Find the cube-roots of : -216

Find the cube-roots of : 27/64

Find the cube-roots of : 9261

Find the cube-roots of : 1728

Find the cube-roots of : -5832

Find the cube-roots of : 2.744

Find the cube-roots of : 343