Home
Class 12
MATHS
cot^-1{sqrt(1+sinx)+sqrt(1-sinx)}/{sqrt(...

`cot^-1{sqrt(1+sinx)+sqrt(1-sinx)}/{sqrt(1+sinx)-sqrt(1-sinx)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the simplest form : cot^(-1) [(sqrt(1+sinx)+sqrt(1-sin x))/(sqrt(1+sinx)-sqrt(1-sin x)]], x epsilon [0, pi/4]

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

The value of tan^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} is : ((pi)/(2) lt x lt pi)

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to

sqrt(sinx)

sqrt(sinx)

(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))=? (x is in IV quadrant)