Home
Class 12
MATHS
Prove that |(1+a^2,ab,ac),(ab,1+b^2,bc),...

Prove that `|(1+a^2,ab,ac),(ab,1+b^2,bc),(ca,cb,1+c^2)| =1+a^2+b^2+c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

Prove that , Prove that 1+a^(2),ab,acab,1+b^(2),bcca,cb,1+c^(2)]|=1+a^(2)+b^(2)+c^(2)

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Prove that |[1,1,1] , [a,b,c] ,[a^2-bc, b^2-ca, c^2-ab]|=0