Home
Class 9
MATHS
Find the values of a and b in each of th...

Find the values of a and b in each of the
`(2+sqrt(3))/(2-sqrt(3))= a+ bsqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{2+\sqrt{3}}{2-\sqrt{3}} = a + b\sqrt{3}\), we will follow these steps: ### Step 1: Rationalize the Denominator We will multiply the numerator and the denominator by the conjugate of the denominator, which is \(2 + \sqrt{3}\). \[ \frac{2+\sqrt{3}}{2-\sqrt{3}} \cdot \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{(2+\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})} \] ### Step 2: Expand the Numerator Now we will expand the numerator using the formula \((a+b)^2 = a^2 + 2ab + b^2\): \[ (2+\sqrt{3})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] ### Step 3: Expand the Denominator Now we will simplify the denominator using the difference of squares formula \(a^2 - b^2\): \[ (2-\sqrt{3})(2+\sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] ### Step 4: Combine the Results Now we can combine the results from the numerator and denominator: \[ \frac{7 + 4\sqrt{3}}{1} = 7 + 4\sqrt{3} \] ### Step 5: Compare with \(a + b\sqrt{3}\) Now we can compare this with \(a + b\sqrt{3}\): \[ a + b\sqrt{3} = 7 + 4\sqrt{3} \] From this, we can see that: \[ a = 7 \quad \text{and} \quad b = 4 \] ### Final Answer Thus, the values of \(a\) and \(b\) are: \[ a = 7, \quad b = 4 \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (D)|21 Videos
  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (B)|43 Videos
  • PYTHAGORAS THEOREM

    ICSE|Exercise 4 MARKS QUESTIONS|9 Videos
  • RECTILINEAR FIGURES

    ICSE|Exercise QUADRILATERALS AND ITS PROPERTIES - 4 MARKS QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2))= a+b sqrt(2)

Find the values of a and b in each of the (sqrt(7)-2)/(sqrt(7)+2)= a sqrt(7)+b

Find the values of a and b in each of the (3)/(sqrt(3)-sqrt(2))= a sqrt(3)-bsqrt(2)

Find the value of a and b in each of the following (i)(3+sqrt(2))/(3-sqrt(2))=a+bsqrt(2)" "(ii)(sqrt(2)+1)/(sqrt(2)-1)=a-bsqrt(2)" "(iii)(5+4sqrt(3))/(5-4sqrt(3))=a-bsqrt(3)

Find the values of a and b in each of the following : (a)(5+2sqrt3)/(7+4sqrt(3))=a-6sqrt(3)" "(b)(3-sqrt(5))/(3+2sqrt(5))=asqrt(5)-(19)/(11) (c )(sqrt(2)+sqrt(3))/(3sqrt2-2sqrt(3))=2-bsqrt(6)" "(d)(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7)/(11)sqrt(5b)

Find the values of a and b if : (2sqrt(3)+3sqrt(2))/(2sqrt(3)-3sqrt(2))=a+bsqrt(6)

Find the value of a and b if (i)(sqrt(3)+1)/(sqrt(3)-1)=a+bsqrt(3)" "(ii)(5+2sqrt(3))/(5-2sqrt(3))=a+bsqrt(3)

If both a and b are rational numbers, find the values of a and b in each of the following equalities : (sqrt(3)-1)/(sqrt(3)+1)=a+bsqrt(3)

If both a\ a n d\ b are rational numbers, find the values of a\ a n d\ b in each of the following equalities: (sqrt(3)-1)/(sqrt(3)+1)=a+bsqrt(3)

If both a\ a n d\ b are rational numbers, find the values of a\ a n d\ b in each of the following equalities: (sqrt(2)+\ sqrt(3))/(3sqrt(2\ )-\ 2sqrt(3))=a-b\ sqrt(6)

ICSE-RATIONAL AND IRRATIONAL NUMBERS -EXERCISE 1 (C)
  1. Rationalize the denominatiors of : (sqrt(6)-sqrt(5))/(sqrt(6)+sqrt(5...

    Text Solution

    |

  2. Rationalize the denominatiors of : (2sqrt(5)+3sqrt(2))/(2sqrt(5)-3s...

    Text Solution

    |

  3. Find the values of a and b in each of the (2+sqrt(3))/(2-sqrt(3))= ...

    Text Solution

    |

  4. Find the values of a and b in each of the (sqrt(7)-2)/(sqrt(7)+2)= ...

    Text Solution

    |

  5. Find the values of a and b in each of the (3)/(sqrt(3)-sqrt(2))= a...

    Text Solution

    |

  6. Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2)...

    Text Solution

    |

  7. Simplify : (22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)

    Text Solution

    |

  8. Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

    Text Solution

    |

  9. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  10. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  11. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  12. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  13. If m = (1)/(3-2sqrt(2)) and n = (1)/(3+2sqrt(2)) find : (i) m^(2) (...

    Text Solution

    |

  14. If x=2sqrt(3)+2sqrt(2) find : (1)/(x)

    Text Solution

    |

  15. If x=2sqrt(3)+2sqrt(2) find : x+(1)/(x)

    Text Solution

    |

  16. If x=2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

    Text Solution

    |

  17. If x =1-sqrt(2) find the value of (x-(1)/(x))^(3)

    Text Solution

    |

  18. If x = 5-2sqrt(6) find : x^(2)+ (1)/(x^(2))

    Text Solution

    |

  19. Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sq...

    Text Solution

    |

  20. Rationalize the denominator of : (1)/(sqrt(3)-sqrt(2)+1)

    Text Solution

    |