Home
Class 9
MATHS
If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (s...

If x `=(sqrt(5)-2)/(sqrt(5)+2)` and `y = (sqrt(5)+2)/(sqrt(5)-2)` : find :
`x^(2)+ y^(2)+xy `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 + xy \), where \( x = \frac{\sqrt{5}-2}{\sqrt{5}+2} \) and \( y = \frac{\sqrt{5}+2}{\sqrt{5}-2} \). ### Step 1: Simplify \( x \) We start with the expression for \( x \): \[ x = \frac{\sqrt{5}-2}{\sqrt{5}+2} \] To simplify \( x \), we multiply the numerator and denominator by the conjugate of the denominator, which is \( \sqrt{5}-2 \): \[ x = \frac{(\sqrt{5}-2)(\sqrt{5}-2)}{(\sqrt{5}+2)(\sqrt{5}-2)} \] ### Step 2: Calculate the Denominator The denominator can be calculated using the difference of squares: \[ (\sqrt{5}+2)(\sqrt{5}-2) = (\sqrt{5})^2 - (2)^2 = 5 - 4 = 1 \] ### Step 3: Calculate the Numerator Now, calculate the numerator: \[ (\sqrt{5}-2)(\sqrt{5}-2) = (\sqrt{5})^2 - 2 \cdot \sqrt{5} \cdot 2 + (2)^2 = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5} \] ### Step 4: Final Simplification of \( x \) Thus, we have: \[ x = \frac{9 - 4\sqrt{5}}{1} = 9 - 4\sqrt{5} \] ### Step 5: Simplify \( y \) Now, we simplify \( y \): \[ y = \frac{\sqrt{5}+2}{\sqrt{5}-2} \] Again, we multiply by the conjugate of the denominator: \[ y = \frac{(\sqrt{5}+2)(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)} \] ### Step 6: Calculate the Denominator for \( y \) The denominator is the same as before: \[ (\sqrt{5}-2)(\sqrt{5}+2) = 1 \] ### Step 7: Calculate the Numerator for \( y \) Now, calculate the numerator: \[ (\sqrt{5}+2)(\sqrt{5}+2) = (\sqrt{5})^2 + 2 \cdot \sqrt{5} \cdot 2 + (2)^2 = 5 + 4\sqrt{5} + 4 = 9 + 4\sqrt{5} \] ### Step 8: Final Simplification of \( y \) Thus, we have: \[ y = \frac{9 + 4\sqrt{5}}{1} = 9 + 4\sqrt{5} \] ### Step 9: Calculate \( x^2 \) Now we calculate \( x^2 \): \[ x^2 = (9 - 4\sqrt{5})^2 = 9^2 - 2 \cdot 9 \cdot 4\sqrt{5} + (4\sqrt{5})^2 \] \[ = 81 - 72\sqrt{5} + 16 \cdot 5 = 81 - 72\sqrt{5} + 80 = 161 - 72\sqrt{5} \] ### Step 10: Calculate \( y^2 \) Now we calculate \( y^2 \): \[ y^2 = (9 + 4\sqrt{5})^2 = 9^2 + 2 \cdot 9 \cdot 4\sqrt{5} + (4\sqrt{5})^2 \] \[ = 81 + 72\sqrt{5} + 80 = 161 + 72\sqrt{5} \] ### Step 11: Calculate \( xy \) Now we calculate \( xy \): \[ xy = (9 - 4\sqrt{5})(9 + 4\sqrt{5}) = 9^2 - (4\sqrt{5})^2 = 81 - 80 = 1 \] ### Step 12: Combine Results Finally, we combine the results to find \( x^2 + y^2 + xy \): \[ x^2 + y^2 + xy = (161 - 72\sqrt{5}) + (161 + 72\sqrt{5}) + 1 \] \[ = 161 + 161 + 1 = 323 \] Thus, the final answer is: \[ \boxed{323} \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (D)|21 Videos
  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (B)|43 Videos
  • PYTHAGORAS THEOREM

    ICSE|Exercise 4 MARKS QUESTIONS|9 Videos
  • RECTILINEAR FIGURES

    ICSE|Exercise QUADRILATERALS AND ITS PROPERTIES - 4 MARKS QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : y^(2)

If x=(sqrt(5)-2)/(sqrt(5)+2) and y=(sqrt(5)+2)/(sqrt(5)-2): find (i) x^(2)" (ii) "y^(2) (iii) xy " (iv) "x^(2)+y^(2)+xy

If a=(2-sqrt(5))/(2+sqrt(5)) and b=(2+sqrt(5))/(2-sqrt(5)), find a^2-b^2

If a=(2-sqrt(5))/(2+sqrt(5)) and b=(2+sqrt(5))/(2-sqrt(5)), find a^2-b^2

Simplify: (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+\ 2)/(sqrt(5)-\ 2)

If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqrt(5))/(2+sqrt(5)) =y , find the value of x^(2)-y^(2) .

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

ICSE-RATIONAL AND IRRATIONAL NUMBERS -EXERCISE 1 (C)
  1. Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2)...

    Text Solution

    |

  2. Simplify : (22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)

    Text Solution

    |

  3. Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

    Text Solution

    |

  4. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  5. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  6. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  7. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  8. If m = (1)/(3-2sqrt(2)) and n = (1)/(3+2sqrt(2)) find : (i) m^(2) (...

    Text Solution

    |

  9. If x=2sqrt(3)+2sqrt(2) find : (1)/(x)

    Text Solution

    |

  10. If x=2sqrt(3)+2sqrt(2) find : x+(1)/(x)

    Text Solution

    |

  11. If x=2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

    Text Solution

    |

  12. If x =1-sqrt(2) find the value of (x-(1)/(x))^(3)

    Text Solution

    |

  13. If x = 5-2sqrt(6) find : x^(2)+ (1)/(x^(2))

    Text Solution

    |

  14. Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sq...

    Text Solution

    |

  15. Rationalize the denominator of : (1)/(sqrt(3)-sqrt(2)+1)

    Text Solution

    |

  16. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  17. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  18. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  19. Evalutate : (4-sqrt(5))/(4+sqrt(5))+ (4+sqrt(5))/(4-sqrt(5))

    Text Solution

    |

  20. If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqrt(5))/(2+sqrt(5)) =y , find th...

    Text Solution

    |