Home
Class 9
MATHS
Rationalize the denominator of : (1)/(sq...

Rationalize the denominator of : `(1)/(sqrt(3)-sqrt(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator of the expression \( \frac{1}{\sqrt{3} - \sqrt{2} + 1} \), we will follow these steps: ### Step 1: Rewrite the Denominator We can rewrite the denominator as: \[ \sqrt{3} + 1 - \sqrt{2} \] This helps in visualizing the rationalization process. ### Step 2: Multiply by the Conjugate To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \( \sqrt{3} + 1 - \sqrt{2} \) is \( \sqrt{3} + 1 + \sqrt{2} \). Thus, we multiply: \[ \frac{1}{\sqrt{3} - \sqrt{2} + 1} \times \frac{\sqrt{3} + 1 + \sqrt{2}}{\sqrt{3} + 1 + \sqrt{2}} \] ### Step 3: Simplify the Denominator Now, we simplify the denominator using the difference of squares: \[ (\sqrt{3} + 1 - \sqrt{2})(\sqrt{3} + 1 + \sqrt{2}) = (\sqrt{3} + 1)^2 - (\sqrt{2})^2 \] Calculating \( (\sqrt{3} + 1)^2 \): \[ (\sqrt{3})^2 + 2 \cdot \sqrt{3} \cdot 1 + 1^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Now, substituting back: \[ (4 + 2\sqrt{3}) - 2 = 2 + 2\sqrt{3} \] ### Step 4: Simplify the Numerator The numerator becomes: \[ \sqrt{3} + 1 + \sqrt{2} \] So, we have: \[ \frac{\sqrt{3} + 1 + \sqrt{2}}{2 + 2\sqrt{3}} \] ### Step 5: Factor Out the Denominator We can factor out a 2 from the denominator: \[ \frac{\sqrt{3} + 1 + \sqrt{2}}{2(1 + \sqrt{3})} \] This simplifies to: \[ \frac{1}{2} \cdot \frac{\sqrt{3} + 1 + \sqrt{2}}{1 + \sqrt{3}} \] ### Step 6: Rationalize Again To further rationalize, we multiply the numerator and denominator by \( 1 - \sqrt{3} \): \[ \frac{1}{2} \cdot \frac{(\sqrt{3} + 1 + \sqrt{2})(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} \] ### Step 7: Simplify the Denominator Again The denominator simplifies to: \[ 1 - 3 = -2 \] ### Step 8: Expand the Numerator Now we expand the numerator: \[ (\sqrt{3} + 1 + \sqrt{2})(1 - \sqrt{3}) = \sqrt{3} - 3 + 1 - \sqrt{3} + \sqrt{2} - \sqrt{6} \] Combining like terms: \[ -2 + \sqrt{2} - \sqrt{6} \] ### Final Expression Putting it all together, we have: \[ \frac{1}{2} \cdot \frac{-2 + \sqrt{2} - \sqrt{6}}{-2} = \frac{1}{4}(\sqrt{2} - \sqrt{6} + 2) \] Thus, the final answer is: \[ \frac{\sqrt{2} - \sqrt{6} + 2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (D)|21 Videos
  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (B)|43 Videos
  • PYTHAGORAS THEOREM

    ICSE|Exercise 4 MARKS QUESTIONS|9 Videos
  • RECTILINEAR FIGURES

    ICSE|Exercise QUADRILATERALS AND ITS PROPERTIES - 4 MARKS QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

Rationalize the denominatior of : (1)/(sqrt(3)-sqrt(2))

Rationalize the denominator of (1)/(sqrt(2))

Rationalize the denominatior of : (3)/(sqrt(5)+sqrt(2))

Rationalise the denominator of (1)/(sqrt(5)) .

Rationalize the denominator : 14/(5sqrt(3)-sqrt(5))

Rationalise the denominator of 5/(sqrt(3)-\ sqrt(5))

Rationalise the denominator of 1/(3+sqrt(2))

Rationalise the denominator of 1/(3+sqrt(2))

Rationalise the denominator of 1/(2+sqrt(3))

Rationalise the denominator of 1/(sqrt(2))

ICSE-RATIONAL AND IRRATIONAL NUMBERS -EXERCISE 1 (C)
  1. Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2)...

    Text Solution

    |

  2. Simplify : (22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)

    Text Solution

    |

  3. Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

    Text Solution

    |

  4. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  5. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  6. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  7. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  8. If m = (1)/(3-2sqrt(2)) and n = (1)/(3+2sqrt(2)) find : (i) m^(2) (...

    Text Solution

    |

  9. If x=2sqrt(3)+2sqrt(2) find : (1)/(x)

    Text Solution

    |

  10. If x=2sqrt(3)+2sqrt(2) find : x+(1)/(x)

    Text Solution

    |

  11. If x=2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

    Text Solution

    |

  12. If x =1-sqrt(2) find the value of (x-(1)/(x))^(3)

    Text Solution

    |

  13. If x = 5-2sqrt(6) find : x^(2)+ (1)/(x^(2))

    Text Solution

    |

  14. Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sq...

    Text Solution

    |

  15. Rationalize the denominator of : (1)/(sqrt(3)-sqrt(2)+1)

    Text Solution

    |

  16. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  17. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  18. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  19. Evalutate : (4-sqrt(5))/(4+sqrt(5))+ (4+sqrt(5))/(4-sqrt(5))

    Text Solution

    |

  20. If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqrt(5))/(2+sqrt(5)) =y , find th...

    Text Solution

    |