Home
Class 9
MATHS
If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqr...

If `(2+sqrt(5))/(2-sqrt(5))` =x and `(2-sqrt(5))/(2+sqrt(5))` =y , find the value of `x^(2)-y^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 - y^2 \) given: \[ x = \frac{2 + \sqrt{5}}{2 - \sqrt{5}} \quad \text{and} \quad y = \frac{2 - \sqrt{5}}{2 + \sqrt{5}} \] ### Step 1: Calculate \( x^2 \) First, we will calculate \( x^2 \): \[ x^2 = \left( \frac{2 + \sqrt{5}}{2 - \sqrt{5}} \right)^2 = \frac{(2 + \sqrt{5})^2}{(2 - \sqrt{5})^2} \] Using the formula \( (a + b)^2 = a^2 + 2ab + b^2 \) for the numerator and \( (a - b)^2 = a^2 - 2ab + b^2 \) for the denominator: - Numerator: \[ (2 + \sqrt{5})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{5} + (\sqrt{5})^2 = 4 + 4\sqrt{5} + 5 = 9 + 4\sqrt{5} \] - Denominator: \[ (2 - \sqrt{5})^2 = 2^2 - 2 \cdot 2 \cdot \sqrt{5} + (\sqrt{5})^2 = 4 - 4\sqrt{5} + 5 = 9 - 4\sqrt{5} \] Thus, we have: \[ x^2 = \frac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} \] ### Step 2: Calculate \( y^2 \) Next, we calculate \( y^2 \): \[ y^2 = \left( \frac{2 - \sqrt{5}}{2 + \sqrt{5}} \right)^2 = \frac{(2 - \sqrt{5})^2}{(2 + \sqrt{5})^2} \] Using the same formulas as above: - Numerator: \[ (2 - \sqrt{5})^2 = 4 - 4\sqrt{5} + 5 = 9 - 4\sqrt{5} \] - Denominator: \[ (2 + \sqrt{5})^2 = 4 + 4\sqrt{5} + 5 = 9 + 4\sqrt{5} \] Thus, we have: \[ y^2 = \frac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}} \] ### Step 3: Calculate \( x^2 - y^2 \) Now, we need to find \( x^2 - y^2 \): \[ x^2 - y^2 = \frac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} - \frac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}} \] To subtract these fractions, we need a common denominator: \[ x^2 - y^2 = \frac{(9 + 4\sqrt{5})^2 - (9 - 4\sqrt{5})^2}{(9 - 4\sqrt{5})(9 + 4\sqrt{5})} \] Using the difference of squares formula \( a^2 - b^2 = (a - b)(a + b) \): - Let \( a = 9 + 4\sqrt{5} \) and \( b = 9 - 4\sqrt{5} \): \[ a - b = (9 + 4\sqrt{5}) - (9 - 4\sqrt{5}) = 8\sqrt{5} \] \[ a + b = (9 + 4\sqrt{5}) + (9 - 4\sqrt{5}) = 18 \] Thus, we have: \[ (9 + 4\sqrt{5})^2 - (9 - 4\sqrt{5})^2 = (8\sqrt{5})(18) = 144\sqrt{5} \] Now, we need to calculate the denominator: \[ (9 - 4\sqrt{5})(9 + 4\sqrt{5}) = 9^2 - (4\sqrt{5})^2 = 81 - 80 = 1 \] So, we have: \[ x^2 - y^2 = \frac{144\sqrt{5}}{1} = 144\sqrt{5} \] ### Final Answer Thus, the value of \( x^2 - y^2 \) is: \[ \boxed{144\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (D)|21 Videos
  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (B)|43 Videos
  • PYTHAGORAS THEOREM

    ICSE|Exercise 4 MARKS QUESTIONS|9 Videos
  • RECTILINEAR FIGURES

    ICSE|Exercise QUADRILATERALS AND ITS PROPERTIES - 4 MARKS QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

If a=(2-sqrt(5))/(2+sqrt(5)) and b=(2+sqrt(5))/(2-sqrt(5)), find a^2-b^2

If a=(2-sqrt(5))/(2+sqrt(5)) and b=(2+sqrt(5))/(2-sqrt(5)), find a^2-b^2

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : y^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

Simplify: (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+\ 2)/(sqrt(5)-\ 2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)+ y^(2)+xy

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

ICSE-RATIONAL AND IRRATIONAL NUMBERS -EXERCISE 1 (C)
  1. Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2)...

    Text Solution

    |

  2. Simplify : (22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)

    Text Solution

    |

  3. Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

    Text Solution

    |

  4. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  5. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  6. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  7. If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find :...

    Text Solution

    |

  8. If m = (1)/(3-2sqrt(2)) and n = (1)/(3+2sqrt(2)) find : (i) m^(2) (...

    Text Solution

    |

  9. If x=2sqrt(3)+2sqrt(2) find : (1)/(x)

    Text Solution

    |

  10. If x=2sqrt(3)+2sqrt(2) find : x+(1)/(x)

    Text Solution

    |

  11. If x=2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

    Text Solution

    |

  12. If x =1-sqrt(2) find the value of (x-(1)/(x))^(3)

    Text Solution

    |

  13. If x = 5-2sqrt(6) find : x^(2)+ (1)/(x^(2))

    Text Solution

    |

  14. Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sq...

    Text Solution

    |

  15. Rationalize the denominator of : (1)/(sqrt(3)-sqrt(2)+1)

    Text Solution

    |

  16. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  17. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  18. If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the corre...

    Text Solution

    |

  19. Evalutate : (4-sqrt(5))/(4+sqrt(5))+ (4+sqrt(5))/(4-sqrt(5))

    Text Solution

    |

  20. If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqrt(5))/(2+sqrt(5)) =y , find th...

    Text Solution

    |