Home
Class 9
MATHS
If x = sqrt(3)- sqrt(2) find the value o...

If x = `sqrt(3)- sqrt(2)` find the value of
`x+(1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x + \frac{1}{x} \) where \( x = \sqrt{3} - \sqrt{2} \), we can follow these steps: ### Step 1: Write down the expression We start with the expression: \[ x + \frac{1}{x} \] Substituting the value of \( x \): \[ x + \frac{1}{x} = \left(\sqrt{3} - \sqrt{2}\right) + \frac{1}{\sqrt{3} - \sqrt{2}} \] ### Step 2: Simplify \( \frac{1}{x} \) To simplify \( \frac{1}{\sqrt{3} - \sqrt{2}} \), we will rationalize the denominator. We multiply the numerator and denominator by the conjugate of the denominator, which is \( \sqrt{3} + \sqrt{2} \): \[ \frac{1}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] So, \[ \frac{1}{\sqrt{3} - \sqrt{2}} = \sqrt{3} + \sqrt{2} \] ### Step 3: Combine the expressions Now substitute back into the expression for \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = \left(\sqrt{3} - \sqrt{2}\right) + \left(\sqrt{3} + \sqrt{2}\right) \] Combine like terms: \[ = \sqrt{3} - \sqrt{2} + \sqrt{3} + \sqrt{2} = 2\sqrt{3} \] ### Final Answer Thus, the value of \( x + \frac{1}{x} \) is: \[ \boxed{2\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL AND IRRATIONAL NUMBERS

    ICSE|Exercise EXERCISE 1 (C)|49 Videos
  • PYTHAGORAS THEOREM

    ICSE|Exercise 4 MARKS QUESTIONS|9 Videos
  • RECTILINEAR FIGURES

    ICSE|Exercise QUADRILATERALS AND ITS PROPERTIES - 4 MARKS QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

If x = sqrt(3)- sqrt(2) find the value of x^(3)+ (1)/(x^(3))

If x = sqrt(3)- sqrt(2) find the value of x^(2)+ (1)/(x^(2))

If x = sqrt(3)- sqrt(2) find the value of x^(3)+(1)/(x^(3))- 3 (x^(2)+(1)/(x^(2)))+x+(1)/(x)

If x = 2 + sqrt(3) find the value of x^(2) + (1)/(x^(2))

If x=1-sqrt(2), find the value of (x-1/x)^3

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)

(sqrt(x)-1)^(2)=8-sqrt(28) find the value of x

If x=1-sqrt(2) , find the value of (x-1/x)^3

If x=2+\ sqrt(3), find the value of x+1/x

If 2x= 3+ sqrt7 , find the value of : 4x^(2) +(1)/(x^(2))