Home
Class 9
MATHS
If a = (1)/(a)= m and a ne 0, find in te...

If `a = (1)/(a)= m and a ne 0`, find in terms of 'm', the value of :
`a^(2) - (1)/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. We have \( a = m \) and \( \frac{1}{a} = m \). 2. We need to find the value of \( a^2 - \frac{1}{a^2} \) in terms of \( m \). ### Step-by-step Solution: **Step 1: Express \( a \) and \( \frac{1}{a} \) in terms of \( m \)** From the problem, we know: \[ a = m \quad \text{and} \quad \frac{1}{a} = m \] **Step 2: Find \( a^2 \) and \( \frac{1}{a^2} \)** Now, we calculate \( a^2 \) and \( \frac{1}{a^2} \): \[ a^2 = (m)^2 = m^2 \] \[ \frac{1}{a^2} = \left(\frac{1}{m}\right)^2 = \frac{1}{m^2} \] **Step 3: Substitute into the expression \( a^2 - \frac{1}{a^2} \)** Now, we substitute \( a^2 \) and \( \frac{1}{a^2} \) into the expression: \[ a^2 - \frac{1}{a^2} = m^2 - \frac{1}{m^2} \] **Step 4: Simplify the expression** To simplify \( m^2 - \frac{1}{m^2} \), we can find a common denominator: \[ m^2 - \frac{1}{m^2} = \frac{m^4 - 1}{m^2} \] Thus, the final expression in terms of \( m \) is: \[ a^2 - \frac{1}{a^2} = \frac{m^4 - 1}{m^2} \] ### Final Answer: \[ a^2 - \frac{1}{a^2} = \frac{m^4 - 1}{m^2} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a = (1)/(a)= m and a ne 0 , find in terms of 'm', the value of : a- (1)/(a)

If a^(2) + (1)/(a^(2))= 23 and a ne 0 , find the value of a^(3) + (1)/(a^(3))

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

m^2-m+1=0 find the value of m

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a + (1)/(a)

ICSE-EXPANSIONS-Exercise 4(D)
  1. If x + 2y + 3z = 0 and x^(3) + 4y^(3) + 9z^(3)= 18 xyz, evaluate: ((x+...

    Text Solution

    |

  2. If a = (1)/(a)= m and a ne 0, find in terms of 'm', the value of : a...

    Text Solution

    |

  3. If a = (1)/(a)= m and a ne 0, find in terms of 'm', the value of : a...

    Text Solution

    |

  4. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of coeffici...

    Text Solution

    |

  5. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of coeffici...

    Text Solution

    |

  6. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of constant...

    Text Solution

    |

  7. If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36), find x^(3) + (1)/(27x^(3...

    Text Solution

    |

  8. If 2(x^(2) + 1)= 5x, find x- (1)/(x)

    Text Solution

    |

  9. If 2(x^(2) + 1)= 5x, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  10. If a^(2) + b^(2)= 34 and ab= 12, find: 3(a +b)^(2) + 5(a-b)^(2)

    Text Solution

    |

  11. If a^(2) + b^(2)= 34 and ab= 12, find: 7(a-b)^(2) - 2(a +b)^(2)

    Text Solution

    |

  12. If 3x- (4)/(x)= 4 and x ne 0, find 27 x^(3)- (64)/(x^(3))

    Text Solution

    |

  13. If x^(2) + (1)/(x^(2))= 7 and x ne 0, find the value of : 7x^(3) + 8x-...

    Text Solution

    |

  14. If x= (1)/(x) - 5 and x ne 5, find x^(2)- (1)/(x^(2))

    Text Solution

    |

  15. If x= (1)/(5-x) and x ne 5, find x^(3) + (1)/(x^(3))

    Text Solution

    |

  16. If 3a + 5b + 4c= 0, show that: 27a^(3) + 125b^(3) + 64 c^(3) = 180 abc

    Text Solution

    |

  17. The sum of two numbers is 7 and the sum of their cubes is 133. Find th...

    Text Solution

    |

  18. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2...

    Text Solution

    |

  19. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2x...

    Text Solution

    |

  20. In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25...

    Text Solution

    |