Home
Class 9
MATHS
If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/...

If `x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36)`, find `x^(3) + (1)/(27x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{9x^2} = \frac{25}{36} \) and find \( x^3 + \frac{1}{27x^3} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the equation: \[ x^2 + \frac{1}{9x^2} = \frac{25}{36} \] We notice that \( x^2 + \frac{1}{9x^2} \) can be related to \( \left( x + \frac{1}{3x} \right)^2 \). ### Step 2: Express \( x^2 + \frac{1}{9x^2} \) in terms of \( \left( x + \frac{1}{3x} \right)^2 \) Using the identity: \[ \left( x + \frac{1}{3x} \right)^2 = x^2 + 2 \cdot x \cdot \frac{1}{3x} + \left( \frac{1}{3x} \right)^2 = x^2 + \frac{2}{3} + \frac{1}{9x^2} \] We can rearrange this to find: \[ x^2 + \frac{1}{9x^2} = \left( x + \frac{1}{3x} \right)^2 - \frac{2}{3} \] ### Step 3: Substitute back into the equation Substituting this back into our equation gives: \[ \left( x + \frac{1}{3x} \right)^2 - \frac{2}{3} = \frac{25}{36} \] Adding \( \frac{2}{3} \) to both sides: \[ \left( x + \frac{1}{3x} \right)^2 = \frac{25}{36} + \frac{2}{3} \] To add these fractions, we convert \( \frac{2}{3} \) to have a common denominator of 36: \[ \frac{2}{3} = \frac{24}{36} \] Thus: \[ \left( x + \frac{1}{3x} \right)^2 = \frac{25 + 24}{36} = \frac{49}{36} \] ### Step 4: Take the square root Taking the square root of both sides: \[ x + \frac{1}{3x} = \frac{7}{6} \] Since \( x > 0 \), we only consider the positive root. ### Step 5: Cube both sides Now we cube both sides: \[ \left( x + \frac{1}{3x} \right)^3 = \left( \frac{7}{6} \right)^3 \] Using the expansion formula: \[ a^3 + b^3 + 3ab(a + b) \] where \( a = x \) and \( b = \frac{1}{3x} \), we have: \[ x^3 + \frac{1}{27x^3} + 3 \cdot x \cdot \frac{1}{3x} \left( x + \frac{1}{3x} \right) = \frac{343}{216} \] This simplifies to: \[ x^3 + \frac{1}{27x^3} + \left( x + \frac{1}{3x} \right) = \frac{343}{216} \] ### Step 6: Substitute \( x + \frac{1}{3x} \) We know from earlier that \( x + \frac{1}{3x} = \frac{7}{6} \). Substitute this in: \[ x^3 + \frac{1}{27x^3} + \frac{7}{6} = \frac{343}{216} \] ### Step 7: Isolate \( x^3 + \frac{1}{27x^3} \) Now, we need to isolate \( x^3 + \frac{1}{27x^3} \): \[ x^3 + \frac{1}{27x^3} = \frac{343}{216} - \frac{7}{6} \] Convert \( \frac{7}{6} \) to a fraction with a denominator of 216: \[ \frac{7}{6} = \frac{252}{216} \] Thus: \[ x^3 + \frac{1}{27x^3} = \frac{343 - 252}{216} = \frac{91}{216} \] ### Final Answer Therefore, the value of \( x^3 + \frac{1}{27x^3} \) is: \[ \boxed{\frac{91}{216}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x^(3)- (1)/(x^(3))

If x ne 0 and 3x +(1)/(3x)= 8, find the value of :27 x^(3) + ( 1)/(27x^(3))

If 3x + (1)/(3x) = 3 , find : (ii) 27x^3 + (1)/( 27x^3)

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x- (1)/(x)

If 3x + (1)/(3x) = 3 , find : (i) 9x^(2) + (1)/(9x^2)

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

If 27^x=9/(3^x), find xdot

If 27^x=9/(3^x), find xdot

If x^(2)+6x-27 gt 0 and x^(2)-3x-4 lt 0 , then :

If int sqrt(1-x^2)/x^4dx=A(x).(sqrt(1-x^2))^m where A(x) is a function of x then (A(x))^m = (A) -1/(27x^9) (B) 1/(27x)^9 (C) 1/(3x^9) (D) -1/(3x^9)

ICSE-EXPANSIONS-Exercise 4(D)
  1. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of coeffici...

    Text Solution

    |

  2. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of constant...

    Text Solution

    |

  3. If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36), find x^(3) + (1)/(27x^(3...

    Text Solution

    |

  4. If 2(x^(2) + 1)= 5x, find x- (1)/(x)

    Text Solution

    |

  5. If 2(x^(2) + 1)= 5x, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  6. If a^(2) + b^(2)= 34 and ab= 12, find: 3(a +b)^(2) + 5(a-b)^(2)

    Text Solution

    |

  7. If a^(2) + b^(2)= 34 and ab= 12, find: 7(a-b)^(2) - 2(a +b)^(2)

    Text Solution

    |

  8. If 3x- (4)/(x)= 4 and x ne 0, find 27 x^(3)- (64)/(x^(3))

    Text Solution

    |

  9. If x^(2) + (1)/(x^(2))= 7 and x ne 0, find the value of : 7x^(3) + 8x-...

    Text Solution

    |

  10. If x= (1)/(x) - 5 and x ne 5, find x^(2)- (1)/(x^(2))

    Text Solution

    |

  11. If x= (1)/(5-x) and x ne 5, find x^(3) + (1)/(x^(3))

    Text Solution

    |

  12. If 3a + 5b + 4c= 0, show that: 27a^(3) + 125b^(3) + 64 c^(3) = 180 abc

    Text Solution

    |

  13. The sum of two numbers is 7 and the sum of their cubes is 133. Find th...

    Text Solution

    |

  14. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2...

    Text Solution

    |

  15. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2x...

    Text Solution

    |

  16. In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25...

    Text Solution

    |

  17. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x- (1)/(x)

    Text Solution

    |

  18. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  19. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |

  20. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |