Home
Class 9
MATHS
If x^(2) + (1)/(x^(2))= 7 and x ne 0, fi...

If `x^(2) + (1)/(x^(2))= 7 and x ne 0`, find the value of : `7x^(3) + 8x- (7)/(x^(3))- (8)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Given:** \[ x^2 + \frac{1}{x^2} = 7 \] We need to find the value of: \[ 7x^3 + 8x - \frac{7}{x^3} - \frac{8}{x} \] ### Step 1: Rearranging the Expression We can rearrange the expression by grouping similar terms: \[ 7x^3 - \frac{7}{x^3} + 8x - \frac{8}{x} \] We can factor out 7 and 8: \[ 7\left(x^3 - \frac{1}{x^3}\right) + 8\left(x - \frac{1}{x}\right) \] ### Step 2: Finding \( x^3 - \frac{1}{x^3} \) To find \( x^3 - \frac{1}{x^3} \), we can use the identity: \[ x^3 - \frac{1}{x^3} = \left(x - \frac{1}{x}\right)\left(x^2 + 1 + \frac{1}{x^2}\right) \] First, we need to find \( x - \frac{1}{x} \). ### Step 3: Finding \( x - \frac{1}{x} \) We know: \[ x^2 + \frac{1}{x^2} = 7 \] Using the identity: \[ \left(x - \frac{1}{x}\right)^2 = x^2 - 2 + \frac{1}{x^2} \] We can express it as: \[ \left(x - \frac{1}{x}\right)^2 = 7 - 2 = 5 \] Taking the square root gives us: \[ x - \frac{1}{x} = \sqrt{5} \] ### Step 4: Finding \( x^2 + 1 + \frac{1}{x^2} \) From the earlier expression: \[ x^2 + \frac{1}{x^2} = 7 \] Thus: \[ x^2 + 1 + \frac{1}{x^2} = 7 + 1 = 8 \] ### Step 5: Substitute Back to Find \( x^3 - \frac{1}{x^3} \) Now we can substitute back into the identity: \[ x^3 - \frac{1}{x^3} = \left(x - \frac{1}{x}\right)\left(x^2 + 1 + \frac{1}{x^2}\right) \] Substituting the values we found: \[ x^3 - \frac{1}{x^3} = \sqrt{5} \cdot 8 = 8\sqrt{5} \] ### Step 6: Substitute Values into the Original Expression Now we substitute \( x^3 - \frac{1}{x^3} \) and \( x - \frac{1}{x} \) back into the expression we rearranged: \[ 7(x^3 - \frac{1}{x^3}) + 8(x - \frac{1}{x}) \] This becomes: \[ 7(8\sqrt{5}) + 8(\sqrt{5}) = 56\sqrt{5} + 8\sqrt{5} = 64\sqrt{5} \] ### Final Answer Thus, the value of the expression is: \[ \boxed{64\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x^(2) +(1)/(x^(2)) = 7. find the values of , 3x^(2) - (3)/(x^(2))

If x ne 0 and 3x +(1)/(3x)= 8, find the value of :27 x^(3) + ( 1)/(27x^(3))

If x^2+1/(x^2)=7 , find the value of x^3+1/(x^3)

Find the value of : 2x^(4)-5x^(3)+7x-3 where x=-3

If x=sqrt(3) find the value of 2x^2-8x+7.

If (7)/(12)x-(1)/(3)x=(1)/(2)+(3)/(8) , what is the value of x?

If a is a root of x^(2) - 3x-5=0 find the value of a^(4) - 2a^(3) - 7a^(2) -8a

Let y=x^3-8x+7 and x=f(t). ( dy ) / ( dx ) = 2 and x=3 at t=0, then find the value of (dx)/(dt) at t=0.

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

ICSE-EXPANSIONS-Exercise 4(D)
  1. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of coeffici...

    Text Solution

    |

  2. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of constant...

    Text Solution

    |

  3. If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36), find x^(3) + (1)/(27x^(3...

    Text Solution

    |

  4. If 2(x^(2) + 1)= 5x, find x- (1)/(x)

    Text Solution

    |

  5. If 2(x^(2) + 1)= 5x, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  6. If a^(2) + b^(2)= 34 and ab= 12, find: 3(a +b)^(2) + 5(a-b)^(2)

    Text Solution

    |

  7. If a^(2) + b^(2)= 34 and ab= 12, find: 7(a-b)^(2) - 2(a +b)^(2)

    Text Solution

    |

  8. If 3x- (4)/(x)= 4 and x ne 0, find 27 x^(3)- (64)/(x^(3))

    Text Solution

    |

  9. If x^(2) + (1)/(x^(2))= 7 and x ne 0, find the value of : 7x^(3) + 8x-...

    Text Solution

    |

  10. If x= (1)/(x) - 5 and x ne 5, find x^(2)- (1)/(x^(2))

    Text Solution

    |

  11. If x= (1)/(5-x) and x ne 5, find x^(3) + (1)/(x^(3))

    Text Solution

    |

  12. If 3a + 5b + 4c= 0, show that: 27a^(3) + 125b^(3) + 64 c^(3) = 180 abc

    Text Solution

    |

  13. The sum of two numbers is 7 and the sum of their cubes is 133. Find th...

    Text Solution

    |

  14. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2...

    Text Solution

    |

  15. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2x...

    Text Solution

    |

  16. In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25...

    Text Solution

    |

  17. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x- (1)/(x)

    Text Solution

    |

  18. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  19. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |

  20. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |