Home
Class 9
MATHS
If x= (1)/(5-x) and x ne 5, find x^(3) +...

If `x= (1)/(5-x) and x ne 5`, find `x^(3) + (1)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x = \frac{1}{5 - x} \) and find \( x^3 + \frac{1}{x^3} \), we can follow these steps: ### Step 1: Rearranging the Equation Start with the equation: \[ x = \frac{1}{5 - x} \] Multiply both sides by \( 5 - x \) to eliminate the fraction: \[ x(5 - x) = 1 \] ### Step 2: Expanding the Equation Expanding the left side gives: \[ 5x - x^2 = 1 \] ### Step 3: Rearranging into Standard Form Rearranging the equation to standard quadratic form: \[ -x^2 + 5x - 1 = 0 \] Multiplying through by -1 gives: \[ x^2 - 5x + 1 = 0 \] ### Step 4: Using the Quadratic Formula To find \( x \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -5 \), and \( c = 1 \): \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ x = \frac{5 \pm \sqrt{25 - 4}}{2} \] \[ x = \frac{5 \pm \sqrt{21}}{2} \] ### Step 5: Finding \( x + \frac{1}{x} \) Next, we need to find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = \frac{5 + \sqrt{21}}{2} + \frac{2}{5 + \sqrt{21}} \] To simplify \( \frac{2}{5 + \sqrt{21}} \), multiply the numerator and denominator by \( 5 - \sqrt{21} \): \[ \frac{2(5 - \sqrt{21})}{(5 + \sqrt{21})(5 - \sqrt{21})} = \frac{10 - 2\sqrt{21}}{25 - 21} = \frac{10 - 2\sqrt{21}}{4} = \frac{5 - \sqrt{21}}{2} \] Thus: \[ x + \frac{1}{x} = \frac{5 + \sqrt{21}}{2} + \frac{5 - \sqrt{21}}{2} = \frac{10}{2} = 5 \] ### Step 6: Finding \( x^2 + \frac{1}{x^2} \) Using the identity: \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 \] Substituting \( x + \frac{1}{x} = 5 \): \[ x^2 + \frac{1}{x^2} = 5^2 - 2 = 25 - 2 = 23 \] ### Step 7: Finding \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = (x + \frac{1}{x})(x^2 + \frac{1}{x^2}) - (x + \frac{1}{x}) \] Substituting the known values: \[ x^3 + \frac{1}{x^3} = 5 \cdot 23 - 5 = 115 - 5 = 110 \] ### Final Answer Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{110} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x= (1)/(x) - 5 and x ne 5 , find x^(2)- (1)/(x^(2))

If 2(x^(2) + 1)= 5x , find x^(3)- (1)/(x^(3))

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

If 3x - (1)/(3x ) =5 , find : (ii) 81x^4 + (1)/( 81x^4)

If x ne 0 and 3x +(1)/(3x)= 8, find the value of :27 x^(3) + ( 1)/(27x^(3))

If x - (1)/(x) = y , x ne 0 , find the value of (x- (1)/ (x) - 2y ) ^(3)

Let f (x) = (x ^(3) -4)/((x-1)^(3)) AA x ne 1, g (x)== (x ^(4) -2x ^(2))/(4) AA x in R, h (x) (x ^(3) +4)/((x+1)^(3)) AA x ne -1,

If 2(x^(2)+1)=5x , find : (i) x-(1)/(x) (ii) x^(3)-(1)/(x^(3))

If (2x + 3,y-1) =(3,5) , then find x and y.

If x+1/x=5 find the value of x^3+1/(x^3)

ICSE-EXPANSIONS-Exercise 4(D)
  1. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of coeffici...

    Text Solution

    |

  2. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of constant...

    Text Solution

    |

  3. If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36), find x^(3) + (1)/(27x^(3...

    Text Solution

    |

  4. If 2(x^(2) + 1)= 5x, find x- (1)/(x)

    Text Solution

    |

  5. If 2(x^(2) + 1)= 5x, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  6. If a^(2) + b^(2)= 34 and ab= 12, find: 3(a +b)^(2) + 5(a-b)^(2)

    Text Solution

    |

  7. If a^(2) + b^(2)= 34 and ab= 12, find: 7(a-b)^(2) - 2(a +b)^(2)

    Text Solution

    |

  8. If 3x- (4)/(x)= 4 and x ne 0, find 27 x^(3)- (64)/(x^(3))

    Text Solution

    |

  9. If x^(2) + (1)/(x^(2))= 7 and x ne 0, find the value of : 7x^(3) + 8x-...

    Text Solution

    |

  10. If x= (1)/(x) - 5 and x ne 5, find x^(2)- (1)/(x^(2))

    Text Solution

    |

  11. If x= (1)/(5-x) and x ne 5, find x^(3) + (1)/(x^(3))

    Text Solution

    |

  12. If 3a + 5b + 4c= 0, show that: 27a^(3) + 125b^(3) + 64 c^(3) = 180 abc

    Text Solution

    |

  13. The sum of two numbers is 7 and the sum of their cubes is 133. Find th...

    Text Solution

    |

  14. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2...

    Text Solution

    |

  15. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2x...

    Text Solution

    |

  16. In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25...

    Text Solution

    |

  17. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x- (1)/(x)

    Text Solution

    |

  18. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  19. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |

  20. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |