Home
Class 9
MATHS
If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1,...

If `(x^(2) + 1)/(x)= 3(1)/(3) and x gt 1`, find
`x^(3)- (1)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 - \frac{1}{x^3} \) given that \( \frac{x^2 + 1}{x} = \frac{10}{3} \) and \( x > 1 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \frac{x^2 + 1}{x} = \frac{10}{3} \] This can be rewritten as: \[ x^2 + 1 = \frac{10}{3} x \] 2. **Rearranging the equation:** \[ x^2 - \frac{10}{3} x + 1 = 0 \] 3. **Multiply through by 3 to eliminate the fraction:** \[ 3x^2 - 10x + 3 = 0 \] 4. **Use the quadratic formula to find \( x \):** The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = -10 \), and \( c = 3 \): \[ x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] \[ x = \frac{10 \pm \sqrt{100 - 36}}{6} \] \[ x = \frac{10 \pm \sqrt{64}}{6} \] \[ x = \frac{10 \pm 8}{6} \] 5. **Calculate the possible values of \( x \):** \[ x = \frac{18}{6} = 3 \quad \text{or} \quad x = \frac{2}{6} = \frac{1}{3} \] Since we are given \( x > 1 \), we take \( x = 3 \). 6. **Now, find \( x^2 + \frac{1}{x^2} \):** We know: \[ x^2 + \frac{1}{x^2} = \left( \frac{x^2 + 1}{x} \right)^2 - 2 \] First, calculate \( \frac{x^2 + 1}{x} = \frac{10}{3} \): \[ x^2 + \frac{1}{x^2} = \left( \frac{10}{3} \right)^2 - 2 \] \[ = \frac{100}{9} - 2 = \frac{100}{9} - \frac{18}{9} = \frac{82}{9} \] 7. **Next, find \( x - \frac{1}{x} \):** \[ x - \frac{1}{x} = \sqrt{x^2 + \frac{1}{x^2} - 2} \] \[ = \sqrt{\frac{82}{9} - 2} = \sqrt{\frac{82}{9} - \frac{18}{9}} = \sqrt{\frac{64}{9}} = \frac{8}{3} \] 8. **Now, use the identity to find \( x^3 - \frac{1}{x^3} \):** The identity is: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right) \left( x^2 + \frac{1}{x^2} + 1 \right) \] Substitute the values: \[ = \left( \frac{8}{3} \right) \left( \frac{82}{9} + 1 \right) \] \[ = \left( \frac{8}{3} \right) \left( \frac{82}{9} + \frac{9}{9} \right) = \left( \frac{8}{3} \right) \left( \frac{91}{9} \right) \] \[ = \frac{728}{27} \] 9. **Final result:** \[ x^3 - \frac{1}{x^3} = \frac{728}{27} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x- (1)/(x)

If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36) , find x^(3) + (1)/(27x^(3))

If 2(x^(2) + 1)= 5x , find x^(3)- (1)/(x^(3))

If x - (1)/(x) = (1)/(3) evaluate x^(3) - (1)/(x^(3))

If x+(1)/(x)=7 ,then find x^(3)-(1)/(x^(3))

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

If 3x + (1)/(3x) = 3 , find : (i) 9x^(2) + (1)/(9x^2)

If 3x + (1)/(3x) = 3 , find : (ii) 27x^3 + (1)/( 27x^3)

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

ICSE-EXPANSIONS-Exercise 4(D)
  1. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of coeffici...

    Text Solution

    |

  2. In the expansion of (2x^(2)-8) (x-4)^(2), find the value of constant...

    Text Solution

    |

  3. If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36), find x^(3) + (1)/(27x^(3...

    Text Solution

    |

  4. If 2(x^(2) + 1)= 5x, find x- (1)/(x)

    Text Solution

    |

  5. If 2(x^(2) + 1)= 5x, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  6. If a^(2) + b^(2)= 34 and ab= 12, find: 3(a +b)^(2) + 5(a-b)^(2)

    Text Solution

    |

  7. If a^(2) + b^(2)= 34 and ab= 12, find: 7(a-b)^(2) - 2(a +b)^(2)

    Text Solution

    |

  8. If 3x- (4)/(x)= 4 and x ne 0, find 27 x^(3)- (64)/(x^(3))

    Text Solution

    |

  9. If x^(2) + (1)/(x^(2))= 7 and x ne 0, find the value of : 7x^(3) + 8x-...

    Text Solution

    |

  10. If x= (1)/(x) - 5 and x ne 5, find x^(2)- (1)/(x^(2))

    Text Solution

    |

  11. If x= (1)/(5-x) and x ne 5, find x^(3) + (1)/(x^(3))

    Text Solution

    |

  12. If 3a + 5b + 4c= 0, show that: 27a^(3) + 125b^(3) + 64 c^(3) = 180 abc

    Text Solution

    |

  13. The sum of two numbers is 7 and the sum of their cubes is 133. Find th...

    Text Solution

    |

  14. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2...

    Text Solution

    |

  15. In each of the following find the value of 'a' 4x^(2) + ax + 9 = (2x...

    Text Solution

    |

  16. In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25...

    Text Solution

    |

  17. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x- (1)/(x)

    Text Solution

    |

  18. If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1, find x^(3)- (1)/(x^(3))

    Text Solution

    |

  19. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |

  20. The difference between two positive numbers is 4 and the difference be...

    Text Solution

    |