Home
Class 9
MATHS
Express as a single logarithm : 2 + (1)/...

Express as a single logarithm : `2 + (1)/(2) log_(10) 9 - 2 log_(10) 5`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \(2 + \frac{1}{2} \log_{10} 9 - 2 \log_{10} 5\) as a single logarithm, we can follow these steps: ### Step 1: Rewrite the constants and logarithmic terms We start with the expression: \[ f(x) = 2 + \frac{1}{2} \log_{10} 9 - 2 \log_{10} 5 \] We can rewrite \(2\) as \(\log_{10} 100\) because \(100 = 10^2\): \[ f(x) = \log_{10} 100 + \frac{1}{2} \log_{10} 9 - 2 \log_{10} 5 \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \(a \log_b c = \log_b (c^a)\), we can rewrite \(\frac{1}{2} \log_{10} 9\) and \(2 \log_{10} 5\): \[ \frac{1}{2} \log_{10} 9 = \log_{10} (9^{1/2}) = \log_{10} 3 \] \[ 2 \log_{10} 5 = \log_{10} (5^2) = \log_{10} 25 \] Now substituting these back into the expression gives: \[ f(x) = \log_{10} 100 + \log_{10} 3 - \log_{10} 25 \] ### Step 3: Combine the logarithmic terms Using the properties of logarithms, we can combine the logarithmic terms. The property \(\log_b A + \log_b B = \log_b (A \cdot B)\) allows us to combine the first two terms: \[ f(x) = \log_{10} (100 \cdot 3) - \log_{10} 25 \] Next, we can apply the subtraction property \(\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right)\): \[ f(x) = \log_{10} \left(\frac{100 \cdot 3}{25}\right) \] ### Step 4: Simplify the fraction Now we simplify the expression inside the logarithm: \[ \frac{100 \cdot 3}{25} = \frac{300}{25} = 12 \] Thus, we have: \[ f(x) = \log_{10} 12 \] ### Final Answer The expression \(2 + \frac{1}{2} \log_{10} 9 - 2 \log_{10} 5\) can be expressed as a single logarithm: \[ \log_{10} 12 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Write each of the following as single logarithm: (a) 1+ log_(2) 5" "(b) 2- log_(3) 7 (c) 2log_(10) x+3 log_(10) y - 5 log_(10) z

Express as a single logaritham and simplify : 3log5- log 50 + 2log2 +1

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

log4^2_10 + log4_10

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If log_(10)5=a and log_(10)3=b ,then

The value of the expression log_(10) (tan 6^(@))+log_(10) (tan 12^(@))+log_(10) (tan 18^(@))+...+log_(10)(tan 84^(@)) is -

(i) If log(a + 1) = log(4a - 3) - log 3, find a. (ii) If 2 log y - log x - 3 = 0, express x in termss of y. (iii) Prove that : log_(10) 125 = 3(1 - log_(10)2) .

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

Express log_(10) root(5)(108) in term of log_(10)2 and log_(10)3 .

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. Express as a single logarithm : 2 + (1)/(2) log(10) 9 - 2 log(10) 5

    Text Solution

    |

  2. If (3)/(2) log a + (2)/(3) log b - 1 = 0, find the value of a^(9).b^(4...

    Text Solution

    |

  3. If x = 1 + log 2 - log 5, y = 2 log 3 and z = log a - log 5, find the ...

    Text Solution

    |

  4. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  5. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  6. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  7. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  8. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  9. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  10. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  11. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  12. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  13. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  14. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  15. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  16. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  17. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  18. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  19. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  20. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  21. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |