Home
Class 9
MATHS
Evaluate : (i) log(125) 625 - log(16) ...

Evaluate :
(i) `log_(125) 625 - log_(16) 64`
(ii) `log_(16) 32 - log_(25) 125 + log_(9) 27`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the given logarithmic expressions step by step. ### Part (i): Evaluate \( \log_{125} 625 - \log_{16} 64 \) 1. **Rewrite the logarithms using the change of base formula:** \[ \log_{125} 625 = \frac{\log 625}{\log 125}, \quad \log_{16} 64 = \frac{\log 64}{\log 16} \] Thus, we can rewrite the expression: \[ \log_{125} 625 - \log_{16} 64 = \frac{\log 625}{\log 125} - \frac{\log 64}{\log 16} \] 2. **Express the numbers as powers of their prime factors:** - \( 125 = 5^3 \) and \( 625 = 5^4 \) - \( 16 = 2^4 \) and \( 64 = 2^6 \) 3. **Substituting these values into the logarithms:** \[ \log_{125} 625 = \log_{5^3} 5^4 = \frac{4}{3} \quad \text{and} \quad \log_{16} 64 = \log_{2^4} 2^6 = \frac{6}{4} = \frac{3}{2} \] 4. **Now substitute back into the expression:** \[ \frac{4}{3} - \frac{3}{2} \] 5. **Find a common denominator (LCM of 3 and 2 is 6):** \[ \frac{4}{3} = \frac{8}{6}, \quad \frac{3}{2} = \frac{9}{6} \] 6. **Subtract the fractions:** \[ \frac{8}{6} - \frac{9}{6} = \frac{8 - 9}{6} = \frac{-1}{6} \] **Final Answer for Part (i):** \[ \log_{125} 625 - \log_{16} 64 = -\frac{1}{6} \] --- ### Part (ii): Evaluate \( \log_{16} 32 - \log_{25} 125 + \log_{9} 27 \) 1. **Rewrite the logarithms using the change of base formula:** \[ \log_{16} 32 = \frac{\log 32}{\log 16}, \quad \log_{25} 125 = \frac{\log 125}{\log 25}, \quad \log_{9} 27 = \frac{\log 27}{\log 9} \] 2. **Express the numbers as powers of their prime factors:** - \( 16 = 2^4 \) and \( 32 = 2^5 \) - \( 25 = 5^2 \) and \( 125 = 5^3 \) - \( 9 = 3^2 \) and \( 27 = 3^3 \) 3. **Substituting these values into the logarithms:** \[ \log_{16} 32 = \log_{2^4} 2^5 = \frac{5}{4}, \quad \log_{25} 125 = \log_{5^2} 5^3 = \frac{3}{2}, \quad \log_{9} 27 = \log_{3^2} 3^3 = \frac{3}{2} \] 4. **Now substitute back into the expression:** \[ \frac{5}{4} - \frac{3}{2} + \frac{3}{2} \] 5. **Notice that \( -\frac{3}{2} + \frac{3}{2} = 0 \):** \[ \frac{5}{4} + 0 = \frac{5}{4} \] **Final Answer for Part (ii):** \[ \log_{16} 32 - \log_{25} 125 + \log_{9} 27 = \frac{5}{4} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : (i) log_(10) 0.01 (ii) log_(2) (1 div 8) (iii) log_(5)1 (iv) log_(5) 125 (v) log_(16)8 (vi) log_(0.5) 16

Evaluate : (i) log_(b)a xx log_(c)b xx log_(a)c (ii) log_(3) 8 div log_(9) 16 (iii) (log_(5)8)/(log_(25)16 xx log_(100)10)

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Find x if 9^(1//log_(2)3) le log_(2) x le log_(8) 27

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. Evaluate : (i) log(125) 625 - log(16) 64 (ii) log(16) 32 - log(25)...

    Text Solution

    |

  2. If (3)/(2) log a + (2)/(3) log b - 1 = 0, find the value of a^(9).b^(4...

    Text Solution

    |

  3. If x = 1 + log 2 - log 5, y = 2 log 3 and z = log a - log 5, find the ...

    Text Solution

    |

  4. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  5. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  6. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  7. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  8. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  9. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  10. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  11. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  12. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  13. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  14. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  15. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  16. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  17. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  18. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  19. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  20. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  21. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |